Optimization of Relief Well Design Using Artificial Neural Network during Geological CO2 Storage in Pohang Basin, South Korea
Abstract
:1. Introduction
2. Study Area
2.1. Geological Settings
2.2. Three-Dimensional Geological Model Construction
3. Methodology
3.1. Optimization Process
3.2. Storage Efficiency
4. ANN Modeling
4.1. Data Correlation Analysis and Data Preprocessing
4.2. Optimal Number of Nodes and Hidden Layers
4.3. Training and Testing Procedure
5. Results and ANN Model Validation
5.1. Effects of a Relief Well
5.1.1. Without a Relief Well
5.1.2. With a Relief Well
5.1.3. Comparison without and with a Relief Well
5.2. Optimization for Vairous Scenarios
5.3. Architecture and Validation of the ANN Model
5.3.1. ANN Model Performance
5.3.2. ANN Model Validation
6. Discussion
7. Conclusions
- Based on the comparisons made for with or without relief well cases, the average injection rate was 3 tons/day higher if a relief well is operated. In addition, it was found that the relief well extended the injection period by 0.99 years and increased the CO2 storage capacity by 19.44% (215 kton).
- To generate training datasets for the input and output nodes in the ANN model, the operating conditions of both wells and the location of the relief well were optimized to achieve the maximum cumulative mass of the injected CO2. It was found that the cumulative mass for the 10-, 20-, and 30-year injection periods were 218, 292, and 332 kton, respectively. Therefore, the cumulative injection mass increased by 33.94% (74 kton) and 13.7% (40 kton) as the injection period was extended from 10 to 20 years and from 20 to 30 years, respectively. Consequently, it was concluded that 20 years of injection with the relief well would be the best scenario in terms of safe and effective storage in Pohang Basin.
- The ANN model was developed with datasets of 10- and 30-year injection scenarios and validated with that of the 20-year scenario. The optimal architecture of the model consisted of 63 nodes and seven hidden layers at 209 iterations. When the predicted data were compared to the validation data, the ANN model reliably predicted the result with an R2 of 0.9982 and RMSE of 0.6681 for the CO2 injection rate, and an R2 of 0.9828 and RMSE of 0.0497 for the injection well BHP. In addition, the developed ANN model had great accuracy in the prediction of the trapping indices, with an R2 of 0.9927 and RMSE of 0.0136 for the RTI, and an R2 of 0.9607 and RMSE of 0.0085 for the STI, respectively. The total CO2 storage capacity and the relief well location were also accurately predicted with only a 0.68% difference (2 kton) and a distance of 20.1 m, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- In, I.; Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O., de Conink, H., Loos, M., Meyer, L., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2005. [Google Scholar]
- Whittaker, S.; Rostron, B.; Hawkes, C.; Gardner, C.; White, D.; Johnson, J.; Chalaturnyk, R.; Seeburger, D. A decade of CO2 injection into depleting oil fields: Monitoring and research activities of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project. Energy Procedia 2011, 4, 6069–6076. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations. Energy Procedia 2009, 1, 3469–3476. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P.; Cavanagh, A.; Hansen, H.; Nazarian, B.; Iding, M.; Ringrose, P.S. Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010. [Google Scholar]
- Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.F. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 2007, 48, 1798–1807. [Google Scholar] [CrossRef] [Green Version]
- Arts, R.; Chadwick, A.; Eiken, O.; Thibeau, S.; Nooner, S. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 2008, 26. [Google Scholar] [CrossRef]
- Ruiz, H.; Agersborg, R.; Hille, L.T.; Lien, M.; Lindgård, J.; Vatshelle, M. Monitoring Offshore CO2 Storage Using Time-lapse Gravity and Seafloor Deformation; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R. Global warming of 1.5 C. IPCC Spec. Rep. Impacts Glob. Warm. 2018, 1, 1–9. [Google Scholar]
- Crippa, M.; Oreggioni, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Lo Vullo, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.; Vignati, E. Fossil CO2 and GHG Emissions of All World Countries; Publication Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Cho, G.; Cho, H.; Park, N. A Study on Implementation and Deriving Future Tasks of ‘The Korean National CCS Master Action Plan’. J. Clim. Chang. Res. 2016, 7, 237–247. [Google Scholar] [CrossRef]
- Kwon, Y.K.; Shinn, Y.J. Suggestion for technology development and commercialization strategy of CO2 capture and storage in Korea. Econ. Environ. Geol. 2018, 51, 381–392. [Google Scholar] [CrossRef]
- Metz, B. Carbon Dioxide Capture and Storage: IPCC Special Report. Summary for Policymakers, a Report of Working Group III of the IPCC; Technical Summary, a Report Accepted by Working Group III of the IPCC but Not Approved in Detail; World Meteorological Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Bachu, S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
- Kaldi, J.; Gibson-Poole, C. Storage Capacity Estimation, Site Selection and Characterisation for CO2 Storage Projects; CO2CRC, Report No. RPT08-1001; Cooperative Research Centre for Greenhouse Gas Technologies: Canberra, Australia, 2008. [Google Scholar]
- Bachu, S. Comparison between Methodologies Recommended for Estimation of CO2 Storage Capacity in Geological Media; Sequestration Leadership Forum, Phase III Report; Carbon Sequestration Leadership Forum: Washington, DC, USA, 2008. [Google Scholar]
- Morris, J.P.; Detwiler, R.L.; Friedmann, S.J.; Vorobiev, O.Y.; Hao, Y. The large-scale geomechanical and hydrogeological effects of multiple CO2 injection sites on formation stability. Int. J. Greenh. Gas Control 2011, 5, 69–74. [Google Scholar] [CrossRef]
- Dauben, D.L.; Froning, H.R. Development and Evaluation of Micellar Solutions To Improve Water Injectivity. J. Pet. Technol. 2017, 23, 614–620. [Google Scholar] [CrossRef]
- Sloat, B.F.; Larsen, D. How To Stabilize Clays and Improve Injectivity. In Proceedings of the SPE Rocky Mountain Regional Meeting, Casper, WY, USA, 21 May 1984; p. 12. [Google Scholar]
- Goodarzi, S.; Settari, A.; Zoback, M.; Keith, D.W. Thermal Effects on Shear Fracturing and Injectivity During CO2 Storage. In Proceedings of the ISRM International Conference for Effective and Sustainable Hydraulic Fracturing, Brisbane, Australia, 20–22 May 2013; p. 14. [Google Scholar]
- Li, S.; Zhang, Y.; Zhang, X. A study of conceptual model uncertainty in large-scale CO2 storage simulation. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Bergmo, P.E.S.; Grimstad, A.-A.; Lindeberg, E. Simultaneous CO2 injection and water production to optimise aquifer storage capacity. Int. J. Greenh. Gas Control 2011, 5, 555–564. [Google Scholar] [CrossRef]
- Tiamiyu, O.M.; Nygaard, R.; Bai, B. Effect of Aquifer Heterogeneity, Brine Withdrawal, and Well-Completion Strategy on CO2 Injectivity in Shallow Saline Aquifer. In Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, LA, USA, 10–12 November 2010; p. 15. [Google Scholar]
- Buscheck, T.A.; Sun, Y.; Chen, M.; Hao, Y.; Wolery, T.J.; Bourcier, W.L.; Court, B.; Celia, M.A.; Julio Friedmann, S.; Aines, R.D. Active CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh. Gas Control 2012, 6, 230–245. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Bielicki, J.M.; White, J.A.; Sun, Y.; Hao, Y.; Bourcier, W.L.; Carroll, S.A.; Aines, R.D. Managing Geologic CO2 Storage with Pre-injection Brine Production in Tandem Reservoirs. Energy Procedia 2017, 114, 4757–4764. [Google Scholar] [CrossRef]
- Cihan, A.; Birkholzer, J.T.; Bianchi, M. Optimal well placement and brine extraction for pressure management during CO2 sequestration. Int. J. Greenh. Gas Control 2015, 42, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Baek, S.; Lee, H.; Jung, W.; Sung, W. Evaluation of CO2 storage capacity and injectivity using a relief well in a saline aquifer in Pohang basin, offshore South Korea. Geosci. J. 2016, 20, 239–245. [Google Scholar] [CrossRef]
- Kim, M.; Shin, H. Application of a dual tubing CO2 injection-water production horizontal well pattern for improving the CO2 storage capacity and reducing the CAPEX: A case study in Pohang basin, Korea. Int. J. Greenh. Gas Control 2019, 90, 102813. [Google Scholar] [CrossRef]
- Mohaghegh, S. Virtual-Intelligence Applications in Petroleum Engineering: Part 1—Artificial Neural Networks. J. Pet. Technol. 2000, 52, 64–73. [Google Scholar] [CrossRef]
- Guler, B.; Ertekin, T.; Grader, A.S. An Artificial Neural Network Based Relative Permeability Predictor. J. Can. Pet. Technol. 2003, 42, 9. [Google Scholar] [CrossRef]
- Jeirani, Z.; Mohebbi, A. Estimating the initial pressure, permeability and skin factor of oil reservoirs using artificial neural networks. J. Pet. Sci. Eng. 2006, 50, 11–20. [Google Scholar] [CrossRef]
- Azizi, S.; Awad, M.M.; Ahmadloo, E. Prediction of water holdup in vertical and inclined oil–water two-phase flow using artificial neural network. Int. J. Multiph. Flow 2016, 80, 181–187. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, A.Y.; Jeong, H. Predicting CO2 Plume Migration in Heterogeneous Formations Using Conditional Deep Convolutional Generative Adversarial Network. Water Resour. Res. 2019, 55, 5830–5851. [Google Scholar] [CrossRef]
- Hamam, H.; Ertekin, T. A generalized continuous carbon dioxide injection design and screening tool for naturally fractured reservoirs of varying oil compositions. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26–28 March 2018. [Google Scholar]
- Jamali, B.; Haghighat, E.; Ignjatovic, A.; Leitão, J.P.; Deletic, A. Machine learning for accelerating 2D flood models: Potential and challenges. Hydrol. Process. 2021, 35, e14064. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Tatomir, A.; Taherdangkoo, M.; Qiu, P.; Sauter, M. Nonlinear Autoregressive Neural Networks to Predict Hydraulic Fracturing Fluid Leakage into Shallow Groundwater. Water 2020, 12, 841. [Google Scholar] [CrossRef] [Green Version]
- Sipöcz, N.; Tobiesen, F.A.; Assadi, M. The use of Artificial Neural Network models for CO2 capture plants. Appl. Energy 2011, 88, 2368–2376. [Google Scholar] [CrossRef]
- Song, Y.; Sung, W.; Jang, Y.; Jung, W. Application of an artificial neural network in predicting the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers. Int. J. Greenh. Gas Control 2020, 98, 103042. [Google Scholar] [CrossRef]
- Wen, G.; Tang, M.; Benson, S.M. Towards a predictor for CO2 plume migration using deep neural networks. Int. J. Greenh. Gas Control 2021, 105, 103223. [Google Scholar] [CrossRef]
- Kwon, Y.K.; Chang, C.; Shinn, Y. Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin. J. Eng. Geol. 2018, 28, 217–246. [Google Scholar]
- Won, K.-S.; Lee, D.-S.; Kim, S.-J.; Choi, S.-D. Drilling and Completion of CO2 Injection Well in the Offshore Pohang Basin, Yeongil Bay. J. Eng. Geol. 2018, 28, 193–206. [Google Scholar] [CrossRef]
- Choi, B.-Y.; Park, Y.-C.; Shinn, Y.-J.; Kim, K.-Y.; Chae, G.-T.; Kim, J.-C. Preliminary results of numerical simulation in a smail-scale CO2 injection pilot site: 1. Prediction of CO2 plume migration. J. Geol. Soc. Korea 2015, 51, 487–496. [Google Scholar] [CrossRef]
- Song, C.; Son, M.; Sohn, Y.; Han, R.; Shinn, Y.; Kim, J.C. A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. J. Geol. Soc. Korea 2015, 51, 53–66. [Google Scholar] [CrossRef]
- Cheong, S.; Koo, N.; Kim, Y.; Lee, H.; Kim, B.; Shinn, Y. Case Study of Seismic Surveying and Data Processing for Small-scale Carbon Capture and Storage in the Pohang Basin. In Proceedings of the Near Surface Geoscience 2016—22nd European Meeting of Environmental and Engineering Geophysics, Barcelona, Spain, 4–8 September 2016; p. cp-495-00034. [Google Scholar]
- Lee, H.; Shinn, Y.J.; Ong, S.H.; Woo, S.W.; Park, K.G.; Lee, T.J.; Moon, S.W. Fault reactivation potential of an offshore CO2 storage site, Pohang Basin, South Korea. J. Pet. Sci. Eng. 2017, 152, 427–442. [Google Scholar] [CrossRef]
- Sung, W.M.; Lee, Y.S.; Kim, K.H.; Jang, Y.H.; Lee, J.H.; Yoo, I.H. Investigation of CO2 behavior and study on design of optimal injection into Gorae-V aquifer. Environ. Earth Sci. 2011, 64, 1815–1821. [Google Scholar] [CrossRef]
- Land, C.S. Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Soc. Pet. Eng. J. 1968, 8, 149–156. [Google Scholar] [CrossRef]
- Lee, T.J.; Song, Y.; Park, D.-W.; Jeon, J.; Yoon, W.S. Three dimensional geological model of Pohang EGS pilot site, Korea. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Lee, H.; Seo, J.; Lee, Y.; Jung, W.; Sung, W. Regional CO2 solubility trapping potential of a deep saline aquifer in Pohang basin, Korea. Geosci. J. 2016, 20, 561–568. [Google Scholar] [CrossRef]
- Wu, Y.; Carroll, J.J. Acid Gas Injection and Related Technologies; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yang, C.; Nghiem, L.X.; Card, C.; Bremeier, M. Reservoir Model Uncertainty Quantification Through Computer-Assisted History Matching. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007; p. 12. [Google Scholar]
- Nghiem, L.; Shrivastava, V.; Tran, D.; Kohse, B.; Hassam, M.; Yang, C. Simulation of CO2 Storage in Saline Aquifers; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Block, H.D. The Perceptron: A Model for Brain Functioning. I. Rev. Mod. Phys. 1962, 34, 123–135. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 28 July 2021).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–284. [Google Scholar]
- Jang, I.; Oh, S.; Kim, Y.; Park, C.; Kang, H. Well-placement optimisation using sequential artificial neural networks. Energy Explor. Exploit. 2018, 36, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.-G.; Min, B.; Kwon, S.; Park, G.; Kim, S.; Huy, N.X. Determination of an infill well placement using a data-driven multi-modal convolutional neural network. J. Pet. Sci. Eng. 2020, 195, 106805. [Google Scholar] [CrossRef]
- Lee, G.H.; Lee, B.; Kim, H.-J.; Lee, K.; Park, M.-h. The geological CO2 storage capacity of the Jeju Basin, offshore southern Korea, estimated using the storage efficiency. Int. J. Greenh. Gas Control 2014, 23, 22–29. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. J. Mach. Learn. Res. 2011, 15, 315–323. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Goki, S. Deep Learning From Scratch O’REILL Large-scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’ 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–284. [Google Scholar]
- Menad, N.A.; Hemmati-Sarapardeh, A.; Varamesh, A.; Shamshirband, S. Predicting solubility of CO2 in brine by advanced machine learning systems: Application to carbon capture and sequestration. J. CO2 Util. 2019, 33, 83–95. [Google Scholar] [CrossRef]
- Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69. [Google Scholar]
- Kim, J.; Song, Y.; Shinn, Y.; Kwon, Y.; Jung, W.; Sung, W. A study of CO2 storage integrity with rate allocation in multi-layered aquifer. Geosci. J. 2019, 23, 823–832. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Suzuki, A.; Kogawa, T.; Okajima, J.; Komiya, A.; Maruyama, S. Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization. Energy 2019, 166, 1106–1119. [Google Scholar] [CrossRef]
- Lee, H.; Jang, Y.; Jung, W.; Sung, W. CO2 Plume Migration With Gravitational, Viscous, and Capillary Forces in Saline Aquifers. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 19–24 June 2016. [Google Scholar]
Parameter | Value | Parameter | Value | ||
---|---|---|---|---|---|
Pore pressure at 750.0 m | 7.5 MPa | Temperature at 750.0 m | 55.0 °C | ||
Well bottomhole pressure (BHP) | 14.0 MPa | Salinity | 100,000 ppm | ||
Fault reactivation pressure (Safety factor 80%) | 14.6 MPa (11.7 MPa) | Average permeability | aquifer A | 30 md | |
aquifer B | 11 md | ||||
Thickness | aquifer A | 11.0 m | Average porosity | aquifer A | 0.32 |
aquifer B | 14.0 m | aquifer B | 0.24 |
Parameter | Minimum | Maximum | ||
---|---|---|---|---|
Relief well x coordinate | Sector A | 33 | Sector A | 77 |
Sector B | 12 | Sector B | 91 | |
Relief well y coordinate | Sector A | 42 | Sector A | 126 |
Sector B | 92 | Sector B | 119 | |
Distance between the injection and relief wells | 100.4 m | 1266.31 m | ||
Injection period | 10 years | 30 years | ||
Reservoir average porosity | 0.23 | 0.29 | ||
Reservoir average permeability | 3.63 md | 18.75 md |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, J. Optimization of Relief Well Design Using Artificial Neural Network during Geological CO2 Storage in Pohang Basin, South Korea. Appl. Sci. 2021, 11, 6996. https://doi.org/10.3390/app11156996
Song Y, Wang J. Optimization of Relief Well Design Using Artificial Neural Network during Geological CO2 Storage in Pohang Basin, South Korea. Applied Sciences. 2021; 11(15):6996. https://doi.org/10.3390/app11156996
Chicago/Turabian StyleSong, Youngsoo, and Jihoon Wang. 2021. "Optimization of Relief Well Design Using Artificial Neural Network during Geological CO2 Storage in Pohang Basin, South Korea" Applied Sciences 11, no. 15: 6996. https://doi.org/10.3390/app11156996
APA StyleSong, Y., & Wang, J. (2021). Optimization of Relief Well Design Using Artificial Neural Network during Geological CO2 Storage in Pohang Basin, South Korea. Applied Sciences, 11(15), 6996. https://doi.org/10.3390/app11156996