Biochemical Composition of Eggplant Fruits: A Review
Abstract
:1. Introduction
2. Material and Methods
3. Proteins in Eggplant
4. Vitamins in Eggplant
5. Minerals in Eggplant
6. Carbohydrates in Eggplant
7. Phenolics in Eggplant
8. Phenolic Acids in Eggplant
9. Anthocyanins in Eggplant
10. Flavonoids in Eggplant
11. Dry Matter Content of Eggplant
12. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rotino, G.L.; Sala, T.; Toppino, L. Eggplant. In Alien Gene Transfer in Crop Plants, Volume 2; Springer: Berlin/Heidelberg, Germany, 2014; pp. 381–409. [Google Scholar]
- Mwinuka, P.R.; Mbilinyi, B.P.; Mbungu, W.B.; Mourice, S.K.; Mahoo, H.F.; Schmitter, P. Optimizing water and nitrogen application for neglected horticultural species in tropical sub-humid climate areas: A case of African eggplant (Solanum aethiopicum L.). Sci. Hortic. 2021, 276, 109756. [Google Scholar] [CrossRef]
- Braga, P.C.; Scalzo, R.L.; Sasso, M.D.; Lattuada, N.; Greco, V.; Fibiani, M. Characterization and antioxidant activity of semi-purified extracts and pure delphinidin-glycosides from eggplant peel (Solanum melongena L.). J. Funct. Foods 2016, 20, 411–421. [Google Scholar] [CrossRef]
- Blando, F.; Calabriso, N.; Berland, H.; Maiorano, G.; Gerardi, C.; Carluccio, M.A.; Andersen, Ø.M. Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. Int. J. Mol. Sci. 2018, 19, 169. [Google Scholar] [CrossRef] [Green Version]
- Niño-Medina, G.; Urías-Orona, V.; Muy-Rangel, M.D.; Heredia, J.B. Structure and content of phenolics in eggplant (Solanum melongena)—A review. S. Afr. J. Bot. 2017, 111, 161–169. [Google Scholar] [CrossRef]
- Kaushik, P.; Saini, D.K. Sequence analysis and homology modelling of SmHQT protein, a key player in chlorogenic acid pathway of eggplant. bioRxiv 2019, 599282. [Google Scholar] [CrossRef]
- Cárdenas, P.D.; Sonawane, P.; Heinig, U.; Bocobza, S.; Burdman, S.; Aharoni, A. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry 2015, 113, 24–32. [Google Scholar] [CrossRef]
- Toppino, L.; Barchi, L.; Scalzo, R.L.; Palazzolo, E.; Francese, G.; Fibiani, M.; D’Alessandro, A.; Papa, V.; Laudicina, V.A.; Sabatino, L.; et al. Mapping quantitative trait loci affecting biochemical and morphological fruit properties in eggplant (Solanum melongena L.). Front. Plant Sci. 2016, 7, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [PubMed]
- Kaushik, P.; Gramazio, P.; Vilanova, S.; Raigón, M.D.; Prohens, J.; Plazas, M. Phenolics Content, Fruit Flesh Colour and Browning in Cultivated Eggplant, Wild Relatives and Interspecific Hybrids and Implications for Fruit Quality Breeding. Food Research International 2017, 102, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Singh, R.; Jha, R.K.; Kaushik, P. Biochemical variability of eggplant peel among Indian cultivars. Indian J. Biochem. Biophys. (IJBB) 2020, 57, 634–637. [Google Scholar]
- Singh, S.; Devi, M.B. Vegetables as a potential source of nutraceuticals and phytochemicals: A review. Int. J. Med. Pharm. Sci. 2015, 5, 1–14. [Google Scholar]
- Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef]
- Valenzuela, J.L.; Manzano, S.; Palma, F.; Carvajal, F.; Garrido, D.; Jamilena, M. Oxidative stress associated with chilling injury in immature fruit: Postharvest technological and biotechnological solutions. Int. J. Mol. Sci. 2017, 18, 1467. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jimenez, J.R.; Amaya-Guerra, C.A.; Baez-Gonzalez, J.G.; Aguilera-Gonzalez, C.; Urias-Orona, V.; Nino-Medina, G. Physicochemical, functional, and nutraceutical properties of eggplant flours obtained by different drying methods. Molecules 2018, 23, 3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorsatto, M.; Pimentel, A.D.C.; Da Silva, A.J.R.; Sabally, K.; Rosa, G.; De Oliveira, G.M.M. Assessment of bioactive compounds, physicochemical composition, and in vitro antioxidant activity of eggplant flour. Int. J. Cardiovasc. Sci. 2017, 30, 235–242. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef]
- Guillermo, N.M.; Dolores, M.R.; Gardea-Bejar, A.; Gonzalez-Aguilar, G.; Heredia, B.; Manuel, B.S.; Siller-Cepeda, J.; De La Rocha, R.V. Nutritional and nutraceutical components of commercial eggplant types grown in Sinaloa, Mexico. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 538–544. [Google Scholar]
- Siasos, G.; Tousoulis, D.; Tsigkou, V.; Kokkou, E.; Oikonomou, E.; Vavuranakis, M.; Basdra, E.; Papavassiliou, A.; Stefanadis, C. Flavonoids in atherosclerosis: An overview of their mechanisms of action. Curr. Med. Chem. 2013, 20, 2641–2660. [Google Scholar] [CrossRef]
- Naeem, M.Y.; Ugur, S. Nutritional Content and Health Benefits of Eggplant. Turk. J. Agric. Food Sci. Technol. 2019, 7, 31–36. [Google Scholar]
- Ekweogu, C.N.; Ude, V.C.; Nwankpa, P.; Emmanuel, O.; Ugbogu, E.A. Ameliorative effect of aqueous leaf extract of Solanum aethiopicum on phenylhydrazine-induced anaemia and toxicity in rats. Toxicol. Res. 2020, 36, 227–238. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 2015, 63, 3323–3337. [Google Scholar] [CrossRef]
- Seraj, H.; Afshari, F.; Hashemi, Z.S.; Timajchi, M.; Olamafar, E.; Ghotbi, L. Effect of Eggplant Skin in the Process of Apoptosis in Cancer Cells. STEM Fellowsh. J. 2017, 3, 7–14. [Google Scholar] [CrossRef] [Green Version]
- S Panickar, K.; Jang, S. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia. Recent Pat. Food Nutr. Agric. 2013, 5, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Gramazio, P.; Yan, H.; Hasing, T.; Vilanova, S.; Prohens, J.; Bombarely, A. Whole-genome resequencing of seven eggplant (Solanum melongena) and one wild relative (S. incanum) accessions provides new insights and breeding tools for eggplant enhancement. Front. Plant Sci. 2019, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P. Characterization of Cultivated Eggplant and its Wild Relatives Based on Important Fruit Biochemical Traits. Pak. J. Biol. Sci. PJBS 2020, 23, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P. Line× Tester analysis for morphological and fruit biochemical traits in eggplant (Solanum melongena L.) using wild relatives as testers. Agronomy 2019, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Fonseka, R.M.; Fonseka, H.H.D.; Abhyapala, K. Crop Wild Relatives: An Underutilized Genetic Resource for Improving Agricultural Productivity and Food Security. In Agricultural Research for Sustainable Food Systems in Sri Lanka; Springer: Berlin/Heidelberg, Germany, 2020; pp. 11–38. [Google Scholar]
- Plazas, M.; Prohens, J.; Cuñat, A.N.; Vilanova, S.; Gramazio, P.; Herraiz, F.J.; Andújar, I. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. Int. J. Mol. Sci. 2014, 15, 17221–17241. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- Raigon, M.D.; Rodriguez-Burruezo, A.; Prohens, J. Effects of organic and conventional cultivation methods on composition of eggplant fruits. J. Agric. Food Chem. 2010, 58, 6833–6840. [Google Scholar] [CrossRef]
- Raigón, M.D.; Prohens, J.; Muñoz-Falcón, J.E.; Nuez, F. Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. J. Food Compos. Anal. 2008, 21, 370–376. [Google Scholar] [CrossRef]
- Kandoliya, U.K.; Bajaniya, V.K.; Bhadja, N.K.; Bodar, N.P.; Golakiya, B.A. Antioxidant and nutritional components of eggplant (Solanum melongena L.) fruit grown in Saurastra region. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 806–813. [Google Scholar]
- Das, S.; Raychaudhuri, U.; Falchi, M.; Bertelli, A.; Braga, P.C.; Das, D.K. Cardioprotective properties of raw and cooked eggplant (Solanum melongena L). Food Funct. 2011, 2, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Al Nachar, K. Investigation and Measurement of Some Mineral and Vitamins in Eggplant Fruit Calyx, and the Possibility of Being Used As Food Supplements and Alternative Medicine. J. Food Nutr. 2019, 5, 1–10. [Google Scholar]
- Edeke, A.; Uchendu, N.; Omeje, K.; Odiba, A.S. Nutritional and Pharmacological Potentials of Solanum melongena and Solanum aethiopicum Fruits. J. Phytopharm. 2021, 10, 61–67. [Google Scholar] [CrossRef]
- Evans, M.; Rumberger, J.A.; Azumano, I.; Napolitano, J.J.; Citrolo, D.; Kamiya, T. Pantethine, a Derivative of Vitamin B5, Favorably Alters Total, LDL and Non-HDL Cholesterol in Low to Moderate Cardiovascular Risk Subjects Eligible for Statin Therapy: A Triple-Blinded Placebo and Diet-Controlled Investigation. Vasc. Health Risk Manag. 2014, 10, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Shabetya, O.N.; Kotsareva, N.V.; Nasser, A.M.; Katskaya, A.G.; Al-Maidi, A.A. Biochemical Composition of Eggplant and Its Change during Storage. Plant Arch. 2020, 20, 385–388. [Google Scholar]
- Arivalagan, M.; Gangopadhyay, K.; Kumar, G.; Bhardwaj, R.; Prasad, T.; Sarkar, S.; Roy, A. Variability in mineral composition of Indian eggplant (Solanum melongena L.) genotypes. J. Food Compos. Anal. 2012, 26, 173–176. [Google Scholar] [CrossRef]
- Davidson, G.I.; Monulu, A.G. Vitamins and Minerals Composition of Eggplant (Solanum macrocarpon) and ‘Ukazi’(Gnetum africanum) leaves as affected by boiling and steaming. J. Sci. Res. Rep. 2018, 21, 1–8. [Google Scholar] [CrossRef]
- San José, R.; Plazas, M.; Sánchez-Mata, M.C.; Cámara, M.; Prohens, J. Diversity in composition of scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants and of interspecific hybrids between S. aethiopicum and common eggplant (S. melongena). J. Food Compos. Anal. 2016, 45, 130–140. [Google Scholar] [CrossRef]
- Boo, H.; Kim, H.; Lee, H. Changes in sugar content and sucrose synthase enzymes during fruit growth in eggplant (Solanum melongena L.) grown on different polyethylene mulches. HortScience 2010, 45, 775–777. [Google Scholar] [CrossRef] [Green Version]
- Meenakshi, S.; Kamal, D.; Malhotra, S.P. Carbohydrate metabolism in tomato (Lycopersicon esculentum L. Mill) fruits during ripening. J. Food Sci. Technol. (Mysore) 2000, 37, 222–226. [Google Scholar]
- San José, R.; Sánchez, M.C.; Cámara, M.M.; Prohens, J. Composition of eggplant cultivars of the O ccidental type and implications for the improvement of nutritional and functional quality. Int. J. Food Sci. Technol. 2013, 48, 2490–2499. [Google Scholar] [CrossRef]
- Okmen, B.; Sigva, H.O.; Mutlu, S.; Doganlar, S.; Yemenicioglu, A.; Frary, A. Total antioxidant activity and total phenolic contents in different Turkish eggplant (Solanum melongena L.) cultivars. Int. J. Food Prop. 2009, 12, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Hanson, P.M.; Yang, R.-Y.; Tsou, S.C.; Ledesma, D.; Engle, L.; Lee, T.-C. Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. J. Food Compos. Anal. 2006, 19, 594–600. [Google Scholar] [CrossRef]
- Kaur, C.; Nagal, S.; Nishad, J.; Kumar, R. Evaluating eggplant (Solanum melongena L.) genotypes for bioactive properties: A chemometric approach. Food Res. Int. 2014, 60, 205–211. [Google Scholar] [CrossRef]
- Plazas, M.; Andújar, I.; Vilanova, S.; Hurtado, M.; Gramazio, P.; Herráiz, F.J.; Prohens, J. Breeding for chlorogenic acid content in eggplant: Interest and prospects. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, B.D.; Stommel, J.R. Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J. Agric. Food Chem. 2003, 51, 3448–3454. [Google Scholar] [CrossRef] [PubMed]
- Plazas, M.; López-Gresa, M.P.; Vilanova, S.; Torres, C.; Hurtado, M.; Gramazio, P.; Andújar, I.; Herráiz, F.J.; Bellés, J.M.; Prohens, J. Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: Fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning. J. Agric. Food Chem. 2013, 61, 8871–8879. [Google Scholar] [CrossRef] [PubMed]
- Zaro, M.J.; Keunchkarian, S.; Chaves, A.R.; Vicente, A.R.; Concellón, A. Changes in bioactive compounds and response to postharvest storage conditions in purple eggplants as affected by fruit developmental stage. Postharvest Biol. Technol. 2014, 96, 110–117. [Google Scholar] [CrossRef]
- Luthria, D.L. A simplified UV spectral scan method for the estimation of phenolic acids and antioxidant capacity in eggplant pulp extracts. J. Funct. Foods 2012, 4, 238–242. [Google Scholar] [CrossRef]
- Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. [Google Scholar] [CrossRef]
- Mazza, G.J. Anthocyanins and Heart Health. Ann. Ist. Super. Sanita 2007, 43, 369–374. [Google Scholar]
- Lin, B.-W.; Gong, C.-C.; Song, H.-F.; Cui, Y.-Y. Effects of Anthocyanins on the Prevention and Treatment of Cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [Green Version]
- Casati, L.; Pagani, F.; Braga, P.C.; Scalzo, R.L.; Sibilia, V. Nasunin, a new player in the field of osteoblast protection against oxidative stress. J. Funct. Foods 2016, 23, 474–484. [Google Scholar] [CrossRef]
- Seeram, N.P.; Bourquin, L.D.; Nair, M.G. Degradation products of cyanidin glycosides from tart cherries and their bioactivities. J. Agric. Food Chem. 2001, 49, 4924–4929. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Konishi, T. Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 2007, 16, 200–208. [Google Scholar] [PubMed]
- Nisha, P.; Nazar, P.A.; Jayamurthy, P. A comparative study on antioxidant activities of different varieties of Solanum melongena. Food Chem. Toxicol. 2009, 47, 2640–2644. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Medouni, L.; Medouni-Adrar, S.; Arkoub, L.; Madani, K. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind. Crop. Prod. 2013, 49, 668–674. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef]
- Scalzo, R.L.; Fibiani, M.; Francese, G.; D’Alessandro, A.; Rotino, G.L.; Conte, P.; Mennella, G. Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.). Food Chem. 2016, 194, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, A.S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Bor, J.-Y.; Chen, H.-Y.; Yen, G. Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J. Agric. Food Chem. 2006, 54, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Nayanathara, A.R.; Mathews, A.; Aalolam, K.P.; Reshma, J.K. Evaluation of total phenol, flavonoid and anthocyanin content in different varieties of eggplant. Emergent Life Sci. Res. 2016, 2, 63–65. [Google Scholar]
- Akanitapichat, P.; Phraibung, K.; Nuchklang, K.; Prompitakkul, S. Antioxidant and hepatoprotective activities of five eggplant varieties. Food Chem. Toxicol. 2010, 48, 3017–3021. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.-M.; Chung, J.-W.; Lee, G.-A.; Lee, J.-R.; Cho, G.-T.; Lee, H.-S.; Ma, K.-H.; Guo, J.; Kim, H.S.; Lee, A.S.-Y. Variation in antioxidant activity and flavonoid aglycones in eggplant (Solanum melongena L.) germplasm. Plant Breed. Biotechnol. 2014, 2, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Plazas, M.; Nguyen-Huu, T.; Orenga, S.G.; Fita, A.; Vicente, O.; Prohens, J.; Boscaiu, M. Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiol. Biochem. 2019, 143, 72–82. [Google Scholar] [CrossRef]
Variety | Primary Fruit Color | Protein (g/kg) |
---|---|---|
Landraces | ||
ANS24 | Purple | 5.2 |
ANS26 | Purple | 5.4 |
ASIS1 | Black | 6.2 |
IVIA604 | Purple | 4.9 |
VS22 | Purple | 4.1 |
VS9 | Purple | 4.6 |
Commercial varieties | ||
10–201 F1 | Black | 4.7 |
10–501 F1 | Black | 4.5 |
Black Beauty | Black | 4.9 |
De Barbentane | Black | 5.9 |
Mulata F1 | Black | 4.8 |
Petra F1 | Black | 4.3 |
Fruit Shape | Fruit Color | Cultivar | Protein (g/100 g) |
---|---|---|---|
Long | Purple | American-Type | 0.67 ± 0.13 |
Long | Purple | Chinese-Type | 0.65 ± 0.06 |
Obovate | Black | Indian-Type | 0.75 ± 0.05 |
Round | Black | Philippines-Type | 0.69 ± 0.09 |
Round | Green | Thai-Type | 0.90 ± 0.07 |
Vitamins | Common Name | mg/100 g |
---|---|---|
Vitamin A | Retinol | 0.8 |
Vitamin B complex | - | 18–22 |
Vitamin B1 | Thiamine | 0.039 |
Vitamin B2 | Riboflavin | 0.037–0.11 |
Vitamin B3 | Niacin | 0.649 |
Vitamin B5 | Pantothenic acid | 0.281 |
Vitamin B6 | Pyridoxine | 0.084–0.1 |
Vitamin B9 | Folate | 18–22 |
Vitamin C | Ascorbate | 1.8–2.2 |
Vitamin E | Tocopherol | 0.2–0.3 |
Vitamin K | Menaquinone | 2.9–3.5 |
Minerals (mg/100 g) | Raw | Boiled | Steamed |
---|---|---|---|
Na | 16.60 | 13.80 | 15.40 |
K | 175.00 | 164.00 | 168.00 |
Ca | 31.24 | 27.69 | 29.56 |
P | 25.48 | 21.77 | 23.54 |
Fe | 1.16 | 1.06 | 1.12 |
Cu | 31.06 | 28.74 | 29.69 |
Minerals | American-Type | Chinese-Type | Indian-Type | Philippines-Type | Thai-Type |
---|---|---|---|---|---|
K | 152.15 | 151.21 | 191.18 | 121.06 | 176.46 |
Ca | 31.36 | 28.00 | 59.63 | 32.80 | 45.08 |
P | 29.61 | 21.21 | 33.52 | 13.80 | 30.42 |
Mg | 25.35 | 15.29 | 28.96 | 15.74 | 20.88 |
Na | 8.49 | 9.40 | 11.54 | 5.76 | 5.61 |
Fe | 0.86 | 2.40 | 1.53 | 3.13 | 1.80 |
Zn | 0.51 | 0.33 | 0.78 | 0.26 | 0.45 |
Mn | 0.41 | 0.36 | 0.44 | 0.30 | 0.39 |
Cu | 0.15 | 0.15 | 0.15 | 0.13 | 0.18 |
Variety | Total Available Carbohydrates | Total Soluble Sugars | Starch |
---|---|---|---|
Scarlet eggplant | |||
BBS116 | 2.89 | 0.43 | 2.46 |
BBS157 | 4.64 | 0.55 | 4.09 |
RNL187 | 3.28 | 0.28 | 3.00 ± 0.22 |
Gboma eggplant | |||
BBS178 | 8.04 | 0.36 | 7.68 |
BBS196 | 6.71 | 0.35 | 6.36 |
RNL371 | 6.22 | 0.21 | 6.01 |
RNL374 | 4.94 | 0.34 | 4.60 |
Cultivar | Total Available Carbohydrates | Total Soluble Sugars | Starch |
---|---|---|---|
BBS118 | 3.05 | 0.74 | 2.31 |
CS16 | 3.82 | 1.48 | 2.34 |
Dourga | 3.55 | 2.13 | 1.43 |
H11 | 4.19 | 1.81 | 2.38 |
IVIA371 | 2.99 | 1.30 | 1.69 |
LF3-24 | 3.55 | 1.49 | 2.06 |
Listada Clemente | 3.62 | 1.24 | 2.38 |
Cultivar | Total Phenolic Content (mg/100 g) |
---|---|
American-Type | 1512.5 |
Chinese-Type | 1350.0 g |
Indian-Type | 1750.0 |
Philippines-Type | 1562.7 |
Thai-Type | 2049.8 |
Turkish | |
Eskisehir Tombul | 1388.9 |
MM738 | 614.8 |
Variety | Primary Fruit Color | Phenolics (mg/kg) |
---|---|---|
Landraces | ||
ANS24 | Purple | 597.4 |
ANS26 | Purple | 539.8 |
IVIA371 | Black | 485.8 |
IVIA604 | Purple | 607 |
MUS8 | Purple | 566.8 |
SUDS5 | Purple | 422.1 |
Commercial varieties | ||
10–201 F1 | Black | 435.3 |
10–501 F1 | Black | 570.8 |
Black Beauty | Black | 408.6 |
De Barbentane | Black | 468.8 |
Mulata F1 | Black | 344.6 |
Petra F1 | Black | 433.5 |
Variety | Dry Matter (g/100 g of Fresh Weight) |
---|---|
Punjab Sadabahar | 6.25 |
Pusa Purple Long | 6.68 |
Pusa Ankur | 7.45 |
Pusa Kranti | 6.66 |
Pusa Upkar | 7.42 |
Variety | Primary Fruit Color | Dry Matter (g/kg) |
---|---|---|
Landraces | ||
ANS24 | Purple | 58.5 |
ANS26 | Purple | 60.9 |
ASIS1 | Black | 46.9 |
IVIA604 | Purple | 47.8 |
VS22 | Purple | 50.4 |
VS9 | Purple | 67 |
Commercial varieties | ||
10–201 F1 | Black | 58 |
10–501 F1 | Black | 59.1 |
Black Beauty | Black | 55 |
De Barbentane | Black | 54.9 |
Mulata F1 | Black | 61.1 |
Petra F1 | Black | 57.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Kaushik, P. Biochemical Composition of Eggplant Fruits: A Review. Appl. Sci. 2021, 11, 7078. https://doi.org/10.3390/app11157078
Sharma M, Kaushik P. Biochemical Composition of Eggplant Fruits: A Review. Applied Sciences. 2021; 11(15):7078. https://doi.org/10.3390/app11157078
Chicago/Turabian StyleSharma, Meenakshi, and Prashant Kaushik. 2021. "Biochemical Composition of Eggplant Fruits: A Review" Applied Sciences 11, no. 15: 7078. https://doi.org/10.3390/app11157078
APA StyleSharma, M., & Kaushik, P. (2021). Biochemical Composition of Eggplant Fruits: A Review. Applied Sciences, 11(15), 7078. https://doi.org/10.3390/app11157078