1. Introduction
With the widespread application of information technology, the information contained in the network has grown rapidly, which has also brought about information overload and information confusion. Information overload makes the amount of information in the social media far greater than what it can carry. Information confusion often makes people unable to find useful data when searching information. Furthermore, it makes people attracted by irrelevant and messy data. How to reduce information overload and information confusion has also become a research hotspot. As a result, classification catalog, search engine and recommendation system appear.
The earliest recommendation model is collaborative filtering algorithm, which mainly discovers the content that the user is interested in through user behavior data, and recommends it to the user [
1]. Netflix is the first video website to adopt a collaborative filtering algorithm. According to users’ rating data of movies, Netflix mines users’ interests and recommends movies for users. Since then, the recommendation algorithm has emerged. However, in the commercial recommendation system, such as video website or e-commerce website, the scale of users and items is huge. Meanwhile the interaction information between them is very limited. Therefore, the problem of data sparsity arises.
The recommendation algorithm has been continuously improved, resulting in the recommendation model based on neural network, such as DeepFM, Wide&Deep, etc. They cannot only effectively improve the sparse problem of user item matrix in collaborative filtering algorithm, but also can automatically combine features, greatly improving the effect of recommendation [
1]. At present, Tencent video, Taobao, TikTok and other websites have been using neural networks to optimize their recommendation models, in order to increase click-through rate and stay time to bring greater benefits.
The purpose of knowledge graphs is to show entities, events and their relations in the real world in a structured form, and to present Internet information in a way that people can easily understand. Its essence is a knowledge base with a directed graph structure [
2]. In order to improve the effect of recommendation, more and more researchers begin to study the recommendation model based on knowledge graphs. This recommendation method not only integrates the external rich semantic information of item entities, but also introduces the association information between items, which can effectively alleviate the problem of data sparsity and cold start [
3]. At the same time, through the structural display of knowledge graphs, various complex relations between projects can be displayed vividly. Therefore, the hybrid recommendation model that introduces the knowledge graphs has become a trend of current research [
4].
This paper works on the knowledge graphs of the movie field and constructs the knowledge graphs. Furthermore, we mine the data of entities and their relations. We use different methods to optimize the movie knowledge graphs. Furthermore, we improve the knowledge graph representation learning method. Combined with Bayesian personalized recommendation and deep neural network, the movie recommendation model is constructed. It provides a new solution for the application of knowledge graphs and the recommendation model. The main contributions of this paper are as follows:
- (1)
Improve the TransE [
5] algorithm, which is a knowledge graph representation learning method, and propose a hybrid feature learning method based on the nearest neighbor feature information of entities in knowledge graphs. At the same time, we improve the negative sampling process. Experiments show that the proposed model can improve the effect of representation learning.
- (2)
We proposed a movie recommendation algorithm KG-BPR that combines knowledge graphs and Bayesian personalized ranking. Two movie recommendation models based on knowledge graphs are proposed. The first method combines the knowledge graphs and Bayesian personalized ranking, introduces the movie entity vector matrix in ranking learning to help generate the user feature matrix and movie feature matrix in BPR ranking model. Furthermore, it applies them in the scoring prediction process. The advantages of this algorithm are verified by experiments.
- (3)
A movie recommendation method KG-NN, which combines the knowledge graphs and deep neural network, is proposed. This method inputs the knowledge graphs data as auxiliary information into the neural network for recommendations. It makes up for the original model’s lack of consideration of the content information of the item itself and introduces related data external knowledge. Experiments show its advantages in movie recommendation.
The rest of this paper is organized as follows:
Section 2 briefly describes the related work and research progress of knowledge graphs and recommendation systems.
Section 3 elaborates the main process of constructing the knowledge graphs of movie, and shows the constructed knowledge graphs with neo4j.
Section 4 improves the TransE representation learning algorithm by using a method of hybrid feature learning method that uses the nearest neighbor feature structure information of entities in the knowledge graphs. Finally, two movie recommendation models, KG-BPR and KG-NN, are proposed.
Section 5 describes the experimental process. We conduct experiments on the improved TransE representation learning model and the proposed recommendation model. Furthermore, we evaluate the effect of the model according to the evaluation method.
Section 6 summarizes the contribution of this paper, and proposes the improvement we can make in the future.
2. Related Works
Knowledge graph: In the 1970s, expert systems appeared. They use knowledge and reasoning processes to solve difficult and professional problems. This is the earliest knowledge graph. Subsequently, with the continuous development of linked open data, there are many knowledge acquisition methods based on information extraction technology, such as open domain information extraction OIE and Nell [
6].
Google first put forward the concept of knowledge graphs in 2012, and applied knowledge graphs in its search business in the same year, which achieved good results. After that, Sogou in China also applied the knowledge graphs to its own search business. At present, knowledge graphs are constantly applied in various fields, which has brought far-reaching influence, such as Freebase, DBpedia, YAGO, etc. Recently, the knowledge graphs of COVID-19 has been jointly constructed by NCBI, OpenKG and a number of scientific research institutions in China. It has been made public to the world, which provides great help for the global virus research and treatment [
7].
At present, the key technologies of knowledge graphs involve information retrieval, data mining and natural language processing. In recent years, the methods are mainly divided into knowledge driven and data driven. Knowledge driven combines the knowledge and experience of experts to build knowledge systems in a specific field, and expands to other open fields through accumulation. Data driven takes mathematical statistics as the theoretical basis. It takes large-scale data as the driving force, and automatically obtains relevant knowledge through machine learning, data mining and other technologies. The construction of knowledge graphs is divided into several steps, which involve entities recognition, relations extraction and attribute correction. Among them, the object of entity recognition is to recognize entity information from text data. At present, there are three main methods to complete the task, namely, rule-based method, machine learning method and hybrid method. The purpose of relations extraction is to connect all entities and extract their association information to form a complex knowledge network.
In general, knowledge graphs contain a large amount of valuable information. Through the organization and management of unstructured data, the value of data can be deeply explored. Furthermore, the knowledge network can be vividly displayed by combining machine learning algorithms. Therefore, more and more experts begin to do research on knowledge graphs.
Meanwhile, with the rapid development of machine learning, entity recognition based on machine learning methods has become a research focus in recent years. As it was very time-consuming and labor-intensive to extract relationships by manual methods, more and more researchers now use machine learning methods to replace manual labor, which greatly improves the efficiency of knowledge graph construction. The knowledge graph has a wider range of applications.
Recommendation system: The recommendation system was born in the 1990s. At that time, experts led by Glodberg proposed a user based collaborative filtering algorithm to recommend news to users. Then Xerox company improved it and applied it to the email filtering system. After that, the recommendation system has been widely used in industry. Early collaborative filtering algorithms can be divided into two categories: user-based and item-based [
8,
9]. At that time, PHOAKS, Typestry, etc., which were very popular at the time, all used this method to build recommendation systems [
10].
In recent years, as deep learning algorithms have made remarkable achievements in computer vision, autonomous driving, virtual reality and other fields, recommendation models based on deep learning have become a major research hotspot in the recommendation field. At the same time, many model-based recommendation algorithms have been produced, such as the collaborative recommendation algorithm Apriori based on the association algorithm and the collaborative recommendation algorithm NCF based on the neural network [
11]. At present, recommendation algorithms have evolved from classic collaborative filtering algorithms to methods that combine deep neural networks, such as DeepFM, Deep&Wide and Alibaba’s XDeepFM model, which is currently used in the majority of e-commerce websites. The recommendation algorithm based on a neural network can automatically perform feature interaction. Furthermore, various features can be continuously and autonomously learned and trained in the neural network to achieve better results [
12].
In the field of movie recommendation, YouTube’s recommendation technology has been far ahead.
Figure 1 is the framework diagram of the movie recommendation model used by YouTube. It uses Word2Vec, ReLU, softmax, etc., to generate candidate sets. In the recall phase, the value of the linear regression function is used as the sorting criterion to recommend the highest ranked video for users. Furthermore, it can finally achieve good results. This model is also a classic recall model in the history of recommendation algorithm development.
Nowadays, more and more companies apply recommended technology to Internet products. For example, the homepage of the current popular short video platform is a feed stream composed of recommended models, which effectively increases the length of stay and frequency of users. The application of the recommendation system has brought great convenience to people. However, these recommended technologies also have many problems such as data sparseness and cold start.
Recommendation system based on knowledge graphs: knowledge graphs have natural advantages in expanding entity information and strengthening the relations between entities. It can provide a powerful and rich reference for recommendation systems. At the beginning, the researchers directly applied the entity attributes in the knowledge graphs to the recommendation algorithm. Then they produced feature-based knowledge graphs assisted recommendation, that is, the introduction of knowledge graphs representation learning. This method can provide deeper and longer-range associations between entities. Subsequently, a structure-based knowledge graph recommendation model was produced. The structure-based recommendation model can use the structure of the knowledge graphs more directly. For example, it can perform a breadth-first search on each entity to obtain multi-hop related entities nearby, and get recommendation results from it [
13].
In 2016, Hao Wang and other researchers proposed the CKE (Collaborative Knowledge Base Embedding for Recommendation Systems) recommendation model, which aroused widespread concern around the world. The model uses the TransR [
14] representation learning algorithm to obtain the structured information in the knowledge graphs. It uses the encoder to obtain the visual and text representation vectors of the items, and introduces them into the latent factor vectors of the items. Finally, it combines collaborative filtering for recommendation [
15]. In recent years, deep learning has been extremely popular, and deep neural network recommendation algorithms based on knowledge graphs have also been widely studied. In 2018, DKN (Deep Knowledge-Aware Network for News Recommendation) proposed by Hongwei Wang and others for news recommendation [
16] is the representative algorithm.
Knowledge graph recommendation system is applied to many fields, such as smart social tv [
17], personalized user recommendations [
18,
19,
20], etc. However, in recent years, the movie knowledge graph has only just started. Although many scholars have studied knowledge graphs for movie recommendations [
21,
22] and used graph databases for recommendations [
23,
24], these studies still have many drawbacks and need to be continuously studied. Due to the real-time, richness and particularity of movie data, the movie knowledge graphs need to be continuously modified and improved to adapt to the changing and complex data in different scenes. This has become the difficulty of movie recommendation based on the knowledge graphs.
4. Movie Recommendation Model Based on Knowledge Graph Representation Learning
In this section, we use the improved TransE [
5] model to vectorize the knowledge graphs constructed above [
31]. We obtain the low-dimensional dense vectors corresponding to entities and relations. After that, two recommendation methods based on knowledge graphs are proposed, which combine knowledge graphs with Bayesian personalized ranking learning and deep neural networks.
4.1. TransE Algorithm Improvement
4.1.1. TransE Algorithm Introduction
The algorithm can effectively vectorize the knowledge in the graph. We define h as head, r as relation, and t as tail. The specific idea of the TransE algorithm is shown in
Figure 7. It hopes that the two entity vectors can be connected by a relation vector, that is,
h +
r ≈
t.
The scoring function of the TransE algorithm is shown in Formula (1). This function uses Euclidean distance to quantitatively describe the embedding error of entities and relations, where
represents the 2 norm of the vector, that is, the Euclidean distance.
The TransE algorithm uses the idea of maximum interval to train the margin-based ranking loss as the objective function, as shown in Formula (2). Among them, S is all the triples in the knowledge graphs. S’ is the negative example triples we constructed.
represents the margin, which is used to control the distance between positive and negative samples. It is generally set to 1.
The TransE algorithm randomly initializes the entity vector and the relation vector before model training. It performs normalization processing. The algorithm uses the stochastic gradient descent algorithm based on the loss function shown in Equation (
2) to solve the minimum value of the objective function. Finally, the model will generate a d-dimensional vector for the entities and relations in the triple according to the vector dimension d we input.
4.1.2. Improvement of Negative Triples Construction Method
In the training process of TransE algorithm, correct triples and wrong triples are needed. These wrong triples are also called negative triples. We need to construct them ourselves. We propose corresponding improvements to the deficiencies of the original negative sampling algorithm in the TransE model.
The original negative triple construction process of the TransE algorithm is as follows: Firstly, randomly select a triple existing in the knowledge graphs, that is, the correct triple (h, r, t). Then randomly select one or two entities from the knowledge graphs. In our experiment, we randomly select a movie entity or a contributor entity, and use them as the head entity h’ or the tail entity t’ to form a negative triple (h’, r, t’). However, this construction method has an obvious shortcoming. That is, it is very likely that the constructed negative triples are still correct triples. This situation is more common in many-to-one, one-to-many, and many-to-many relational mapping types. For example, the correct triple (Marvel’s The Avengers I, hasActor, Robert Downey, Jr.) may generate negative triple (Marvel’s The Avengers II, hasActor, Robert Downey, Jr.) after sampling in this way. However, the negative triple is correct, which affects the training effect of the model.
In order to solve the above problem, we use the Bernoulli sampling algorithm to randomly select entities. The improved negative triple construction process is as follows: First, for each triple connected by the relationship
r, we count the average number of tail entities corresponding to the head entities and the average number of head entities corresponding to the tail entities, denoted as
and
, respectively. Then, we calculate the probability
P according to Formula (3) and use it as a parameter of the Bernoulli distribution to extract entities. In this way, different methods of extracting entities will be obtained in different relational mapping types.
The extraction method obtained according to the above method is shown in
Table 1.
4.1.3. Training Process Improvement
We introduce the idea of network feature structure learning into the TransE algorithm. We use the method of hybrid feature learning. Furthermore, we use the feature structure information of entities in the knowledge graphs to improve the overall effect of the TransE model.
First, we build a three-layer neural network. The input of the neural network is the neighbor entity set and relation set of a specific entity. Through the middle projection layer, we sum the input information and output our target entity. The specific model structure of the neural network is shown in
Figure 8.
Among them, the input (
,
) (
,
) (
,
)… are all entities and relations connected to a specific entity. The summation formula of the projection layer is shown in Formula (4). The intermediate vector
generated by the projection layer is used as the representation vector of the adjacency structure we have learned.
The feature learning of the neighbor structure takes the prediction probability as the learning objective. The loss function is shown in Formula (5), where
E represents the set of entities in the knowledge graphs, and
represents the adjacent structure information of the specific entity node
t, that is, the input data of the neural network.
We use softmax to calculate the probability in the loss function. The calculation formula is shown in Formula (6). Among them,
represents the un-normalized probability value of the entity
t, as shown in Formula (7).
b and
U are the parameters of softmax, which are constantly changing during the training of the model.
We mainly study the first-order neighbor information of each entity, that is, context information with a step length of 1.
Then, on the basis of the TransE algorithm, we use the adjacent structure information of each entity as a supplement. We use a hybrid feature learning method to improve our model. The improved loss function is shown in Formula (8).
Among them,
is the loss function of the above-mentioned neighbor structure feature learning.
is the loss function of the TransE model, as shown in Formula (9).
Through the loss function, we can see that the improved algorithm has two parts. The first part uses the nearest neighbor vector to predict the target entity so that representation learning can make full use of the structural information in the knowledge graphs. The second part is the training process of the TransE algorithm. In order to allow them to share the representation vector, we adopt a cross-training mechanism of information sharing.
In the iterative process of model optimization, we use the Hierarchical Softmax algorithm [
31,
32]. First, a Huffman tree is constructed. The entities and relations are the leaf nodes of the tree. The frequency of their appearance in the triple set is used as the weight of the node. Therefore, the high-frequency entities and relations are near the root node of the tree. We treat each branch in the path from the root node to the leaf node as a binary classification and generate a probability value. These probabilities are multiplied to obtain the
. We use this method to calculate the
p-value. The specific calculation formula is as follows:
Among them,
is the number of branches in the path from the root node to the entity or relation t.
and
are the intermediate vector and auxiliary vector, respectively, which are obtained during the training process of the model. The calculation of
is shown in Formula (11).
Among them, means that the j-th branch in the path from the root node to the leaf node t is a positive class. Otherwise, is a negative class. is a sigmoid function. After calculation, a probability value of 0 to 1 is output.
4.1.4. Improved Algorithm
The improved TransE model still uses the stochastic gradient descent algorithm to solve the loss function. It continuously update the parameters and vector information through the back propagation algorithm. The specific steps are shown in Algorithm 1.
The algorithm continuously updates the shared vector V of entities and relations through Formula (12). This part is the original part of the TransE algorithm. The values of some parameters in the equation will be discussed in
Section 5.
We continuously update the vector information of the nearest neighbor structure feature of the entity t through Formula (13). The 14th line of the algorithm indicates that the gradient
u is contributed to the shared vector corresponding to all entities and relations in the nearest neighbor structure of the entity
t.
Algorithm 1: Improved TransE algorithm. |
Input: movie triple training set S, vector dimension d, margin and learning rate |
Output: entity vector and relation vector with dimension d |
1: Construct a Huffman tree based on the set of triples S. |
2: Initialize the shared vector V of entities and relations. |
3: for total number of training rounds do |
4: for each correct triple in the triple training set S do |
5: for negative triples constructed using Bernoulli distribution do |
6: Update , , using back propagation and gradient descent algorithm according to Formula (12). |
7: end for |
8: Get the nearest neighbor structure information of the entity t, and use the accumulation method to get . |
9: Initialization vector . |
10: for Number of branches do |
11: According to Formula (13), use back propagation and gradient descent algorithm to update and u. |
12: end for |
13: for do |
14: , where e represents the entity and relation node in . |
15: end for |
16: end for |
17: end for |
4.2. KG-BPR Recommend Model
This paper proposes a movie recommendation algorithm that combines knowledge graphs and Bayesian Personalized Ranking (BPR), referred to as KG-BPR. BPR is a personalized recommendation model based on ranking learning [
33,
34,
35]. It is an improvement of the matrix factorization algorithm. It mainly models the relative preference ranking of two different items, and obtains the user feature matrix and item feature matrix through the user-item ranking data.
The flow chart of the KG-BPR model is shown in
Figure 9. First, we use the improved TransE representation learning method to obtain the entity vector and relation vector corresponding to the knowledge graphs. Then, we integrate the movie entity vector matrix into the BPR model, that is, by introducing the external hidden information of the movie to assist the generation of feature matrix based on user-behavior data. Finally, we can get the model parameters based on the maximum posterior estimation, that is, the user feature matrix and the movie feature matrix. After the model training is completed, the user’s preference value for the movie is obtained through the two generated matrices and the movie entity vector matrix. The movie recommendation list is generated according to the value, and each user can get the recommended movies.
We use V to represent the embedding vector matrix obtained by the representation learning model. The size of V is , where n is the number of movies and k is the dimension of the embedding vector. First, we construct a set of triples, which means that for user u, their interest in movie i is greater than their interest in movie j. These sets of triples are the data sets required for KG-BPR model training, and are denoted by D in the following. In addition, we need to make two assumptions about these data. First, each user’s preference behavior is independent of each other, that is, whether user u likes movie i or movie j has nothing to do with other users. Second, the partial order of the same user for different movies is independent of each other, that is, whether user u likes movie i or movie j has nothing to do with other movies.
After that, the KG-BPR model uses the idea of matrix decomposition to decompose the user-movie prediction ranking matrix
X generated by the above steps. Furthermore, it combines the movie entity vector
V to obtain the user feature matrix
P and the movie feature matrix
Q. Among them, the embedding dimensions of these matrices are consistent. We assume that there are
m users and
n movies in the data set, and the dimension of the feature matrix is
k. Then, the size of the user feature matrix is
. The size of the movie feature matrix is
, as is shown in Formula (14).
At the same time, the preference of user
u for movie
i is calculated as shown in Formula (15).
Among them, represents the u-th row of the user feature matrix P, that is, the potential feature vector of user u. represents the i-th row of the movie feature matrix Q, that is, the potential feature vector of movie i. represents the entity vector of movie i generated by the improved TransE model.
The KG-BPR model uses the maximum posterior estimation to solve the model parameters, namely the matrix
P and the matrix
Q. For convenience, we use
to represent parameters
P and
Q. According to Bayesian formula, the model optimization goal is shown in Formula (16).
Among them,
represents the preference relation of user
u for movie
i and movie
j, that is, the interest of user
u in movie
i is greater than the value of interest in movie
j. In the above, we assume that the user’s preference ranking for movies has nothing to do with other users and movies. Then the above optimization goal is transformed into Formula (17).
It can be seen from Formula (17) that the optimization goal of the KG-BPR model is divided into two parts. The first part is related to the sample data set, and the latter part is irrelevant. For the first part of the optimization goal, the calculation formula of the probability value
is shown in Formula (18).
Among them,
is the sigmoid function.
represents the preference difference of user
u for movie
i and movie
j. The greater the difference, the better the model effect. We use the simplest difference calculation to reflect this difference, as shown in Formula (19).
In summary, the first part of the calculation process of the KG-BPR model optimization objective is shown in Formula (20). At the same time, we can see that the idea of the first item in the optimization goal is very simple. For
in the training data set D, if the user prefers movie
i, then in the user-movie ranking matrix, the value
is greater than
. The greater the difference, the better.
We assume that the prior distribution of the model parameter
is shown in Formula (21). Assuming it is a normal distribution, the second part of the optimization objective of the KG-BPR model is equivalent to adding a regular term, as shown in Formula (22).
Therefore, the final optimization goal of the KG-BPR model, that is, the maximum logarithmic posterior estimation function is shown in Formula (23).
Finally, we take a negative value for the above formula. Using the gradient descent method, we solve the model parameters by obtaining the partial derivative of the two matrices. At last, we obtain the final user feature matrix P and the movie feature matrix Q.
4.3. KG-NN Recommend Model
This section proposes a movie recommendation algorithm that combines knowledge graphs and neural network, referred to as KG-NN.
The main steps of the KG-NN algorithm are as follows: we first use the improved TransE representation learning method in
Section 4 to obtain the entity vector and the relation vector. After the embedding layer, the user data and movie data are, respectively, generated corresponding embedding vectors. Then input the movie entity vector generated by the learning process as auxiliary information into the neural network together. After that, it is the MLP fully connected layer, ReLU activation function and so on. In order to predict the user’s interest in the movie, we combined the user-movie real rating data and Adam optimization method for iterative training. Finally, the rating values of the model training are used to sort from large to small to generate a movie recommendation list.
The flow chart of the KG-NN model in the movie recommendation process of this article is shown in
Figure 10. The input of the KG-NN model mainly has two types. The first type is the embedding vector generated by the basic user data and movie data through the embedding layer. The second type is the movie entity vector generated by the improved TransE representation learning algorithm.
According to the above introduction, we have generated the embedding vector corresponding to the user data and the movie data. We stitch the movie data embedding vector and the movie entity vector horizontally, then stitch it horizontally with the user data embedding vector and input it into the fully connected layer. Through the fully connected neural network for dimensional transformation and feature extraction, we can learn the hidden vectors of users and movies and retain useful information in the neural network. A ReLU function is immediately followed by each fully connected layer.
Finally, the output value obtained by the last fully connected layer of the model is returned to between zero and one after the sigmoid function, as shown in the following formula. Since users in the movie data set rated movies on a five-point scale, we also normalized it to a value between zero and one to get
.
Among them,
represents the weighted output of the last fully connected layer. Then compare it with the normalized user-movie rating data
, and use cross entropy as the loss function. The entire model is trained iteratively with Adam optimizer. The loss function is shown in Formula (25).
Among them, is the predicted score of the KG-NN model. is the normalized real score, and n is the total number of user-movie score data in the training set.
In order to prepare for the final movie recommendation, the model needs to predict the rating value of the movie for each user, and decide whether to recommend the movie to the user according to the calculated score.
We finally get the parameters of the entire KG-NN model. When performing TOP-N recommendation, we use the entire model to predict the user’s ratings of unseen movies. We sort the predicted ratings in descending order, and extract the top N after sorting [
36]. Movies are recommended to users as a recommendation list.
6. Discussion and Conclusions
In this paper, we combine knowledge graphs with recommendation system. In traditional recommendation models such as collaborative filtering and matrix factorization, various behavior data analysis and modeling of users are generally used to recommend items. However, the introduction of knowledge graphs can provide a lot of additional auxiliary information for personalized recommendation systems. It can also effectively alleviating the cold start problem. Although the article only considers the construction of knowledge graphs in the movie domain, the improved recommendation algorithm proposed in this article is also applicable to many other areas, including product recommendation, music recommendation, news recommendation, etc. The algorithm has strong scalability and applicability.
Through the analysis and exploration of related movie data, we determined the entities and relations of the knowledge graphs in the movie domain and completed the construction of the ontology database. We obtained the required movie data through crawler. We completed the construction of the knowledge graphs. Furthermore, we use Neo4j graph database for storage and visual display.
We researched and analyzed the shortcomings of the classic TransE representation learning algorithm, that is, it learns the triple data in isolation during the training process but ignores the structural data and neighbor information in the knowledge graphs. Therefore, we improved the TransE model to solve this problem. The improved model is trained by cross iteration of triple data and knowledge graph structure data. It has effectively improved the effect of learning.
At the same time, we combined the knowledge graphs with the ranking learning and neural network, respectively, and proposed the KG-BPR model and the KG-NN model. We conducted comparative experiments on them, respectively, verifying the feasibility of the two models we proposed. At the same time, it shows that the auxiliary information of the knowledge graphs has important value in the recommendation system.
However, because the knowledge graphs and recommendation system are particularly complex, there are some shortcomings in our work. First of all, when constructing the knowledge graphs, we only considered limited information, such as actors, directors, and basic movie information. Next, we will consider more useful entity data and relational data. On the other hand, the content of knowledge graphs also needs to be updated with the times. Our next step is to consider how to dynamically update the knowledge graph data in the recommendation system. In addition, because the introduction of the knowledge graphs will inevitably reduce the efficiency of the recommendation model greatly. In this paper, we only considered how to improve the effect of the recommendation model. Therefore, in the next research, we will focus on the efficiency of the model and study how to design an efficient recommendation model combined with the knowledge graphs.