CBCT Comparison of Dentoskeletal Effects of Haas-Type and Hyrax-Type Expanders Using Deciduous Teeth as Anchorage: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hyrax Group
3.2. Haas Group
3.3. Hyrax vs. Haas Group
4. Discussion
5. Conclusions
- When measuring 3D maxillary complex structural changes during RME, both Hyrax and Haas appliances anchored on primary teeth showed similar results without any differences in term of skeletal and dental expansion; deciduous teeth could achieve a comparable expansion to permanent teeth but avoiding the possible side-effects reported in the literature.
- Dental expansion was always greater than skeletal expansion; the difference in the appliance design and its subsequent rigidity may play an important role in the effectiveness and in the ratio between dental and skeletal expansion.
- The maxillary expansion on primary teeth could achieve the normal eruption of first molars, avoiding the excessive buccal tipping that occurred when RME was performed using these teeth as anchorage; an improvement in the rotation of the first permanent molar is also achievable promoting a potential and spontaneous correction of the Class II molar relationship.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martina, R.; Cioffi, I.; Farella, M.; Leone, P.; Manzo, P.; Matarese, G.; Portelli, M.; Nucera, R.; Cordasco, G. Transverse changes determined by rapid and slow maxillary expansion—A low-dose CT-based randomized controlled trial. Orthod. Craniofac. Res. 2012, 15, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, N.L.; Da Silveira, A.C.; Kusnoto, B.; Viana, G. Three-dimensional assessment of morphologic changes of the maxilla: A comparison of 2 kinds of palatal expanders. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 354–362. [Google Scholar] [CrossRef]
- Lamparski, D.G., Jr.; Rinchuse, D.J.; Close, J.M.; Sciote, J.J. Comparison of skeletal and dental changes between 2-point and 4-point rapid palatal expanders. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 321–328. [Google Scholar] [CrossRef]
- Costa, J.G.; Galindo, T.M.; Mattos, C.T.; Cury-Saramago, A.A. Retention period after treatment of posterior crossbite with maxillary expansion: A systematic review. Dent. Press J. Orthod. 2017, 22, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Lanteri, V.; Cavagnetto, D.; Abate, A.; Mainardi, E.; Gaffuri, F.; Ugolini, A.; Maspero, C. Buccal Bone Changes Around First Permanent Molars and Second Primary Molars after Maxillary Expansion with a Low Compliance Ni-Ti Leaf Spring Expander. Int. J. Environ. Res. Public Health 2020, 17, 9104. [Google Scholar] [CrossRef]
- Cozzani, M.; Rosa, M.; Cozzani, P.; Siciliani, G. Deciduous dentition-anchored rapid maxillary expansion in crossbite and non-crossbite mixed dentition patients: Reaction of the permanent first molar. Prog. Orthod. 2003, 4, 15–22. [Google Scholar] [CrossRef]
- Cozzani, M.; Guiducci, A.; Mirenghi, S.; Mutinelli, S.; Siciliani, G. Arch width changes with a rapid maxillary expansion appliance anchored to the primary teeth. Angle Orthod. 2007, 77, 296–302. [Google Scholar] [CrossRef]
- Quinzi, V.; Federici Canova, F.; Rizzo, F.A.; Marzo, G.; Rosa, M.; Primozic, J. Factors related to maxillary expander loss due to anchoring deciduous molars exfoliation during treatment in the mixed dentition phase. Eur. J. Orthod. 2021, 43, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Garib, D.G.; Henriques, J.F.; Janson, G.; Freitas, M.R.; Coelho, R.A. Rapid maxillary expansion—Tooth tissue-borne versus tooth-borne expanders: A computed tomography evaluation of dentoskeletal effects. Angle Orthod. 2005, 75, 548–557. [Google Scholar]
- Fernandes, L.C.; Farinazzo Vitral, R.W.; Noritomi, P.Y.; Schmitberger, C.A.; Jose da Silva Campos, M. Influence of the hyrax expander screw position on stress distribution in the maxilla: A study with finite elements. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 80–87. [Google Scholar] [CrossRef]
- Garib, D.G.; Henriques, J.F.; Carvalho, P.E.; Gomes, S.C. Longitudinal effects of rapid maxillary expansion. Angle Orthod. 2007, 77, 442–448. [Google Scholar] [CrossRef]
- Bazargani, F.; Feldmann, I.; Bondemark, L. Three-dimensional analysis of effects of rapid maxillary expansion on facial sutures and bones. Angle Orthod. 2013, 83, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Weissheimer, A.; de Menezes, L.M.; Mezomo, M.; Dias, D.M.; de Lima, E.M.; Rizzatto, S.M. Immediate effects of rapid maxillary expansion with Haas-type and hyrax-type expanders: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 366–376. [Google Scholar] [CrossRef]
- Araújo, M.C.; Bocato, J.R.; Oltramari, P.V.; de Almeida, M.R.; Conti, A.C.; Fernandes, T.M. Tomographic evaluation of dentoskeletal effects of rapid maxillary expansion using Haas and Hyrax palatal expanders in children: A randomized clinical trial. J. Clin. Exp. Dent. 2020, 12, e922–e930. [Google Scholar] [CrossRef]
- Fastuca, R.; Lorusso, P.; Lagravère, M.O.; Michelotti, A.; Portelli, M.; Zecca, P.A.; D’Antò, V.; Militi, A.; Nucera, R.; Caprioglio, A. Digital evaluation of nasal changes induced by rapid maxillary expansion with different anchorage and appliance design. BMC Oral Health 2017, 17, 113. [Google Scholar] [CrossRef] [Green Version]
- Lagravere, M.O.; Major, P.W.; Carey, J. Sensitivity analysis for plane orientation in three-dimensional cephalometric analysis based on superimposition of serial cone beam computed tomography images. Dentomaxillofacial Radiol. 2010, 39, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Lagravere, M.O.; Carey, J.; Heo, G.; Toogood, R.W.; Major, P.W. Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 304.e1–304.e12, discussion 304–305. [Google Scholar] [CrossRef]
- Mutinelli, S.; Manfredi, M.; Guiducci, A.; Denotti, G.; Cozzani, M. Anchorage onto deciduous teeth: Effectiveness of early rapid maxillary expansion in increasing dental arch dimension and improving anterior crowding. Prog. Orthod. 2015, 16, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luca, L.; Enrico, A.; Angela, A.; Chiara, D.A.A.; Giuseppe, S. Rapid maxillary expansion on the permanent teeth versus the deciduous teeth: Comparison of skeletal and dentoalveolar effects by volumetric tomography. J. World Fed. Orthod. 2015, 4, 2–7. [Google Scholar] [CrossRef]
- Caroccia, F.; Moscagiuri, F.; Falconio, L.; Festa, F.; D’Attilio, M. Early Orthodontic Treatments of Unilateral Posterior Crossbite: A Systematic Review. J. Clin. Med. 2020, 10, 33. [Google Scholar] [CrossRef]
- Garrett, B.J.; Caruso, J.M.; Rungcharassaeng, K.; Farrage, J.R.; Kim, J.S.; Taylor, G.D. Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 8–9. [Google Scholar] [CrossRef]
- Kartalian, A.; Gohl, E.; Adamian, M.; Enciso, R. Cone-beam computerized tomography evaluation of the maxillary dentoskeletal complex after rapid palatal expansion. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Lucchi, P.; Manti, G.; Caprioglio, A. Rapid Palatal Expansion in the absence of posterior cross-bite to intercept maxillary incisor crowding in the mixed dentition: A CBCT evaluation of spontaneous changes of untouched permanent molars. Eur. J. Paediatr. Dent. 2016, 17, 286–294. [Google Scholar]
- Sari, Z.; Uysal, T.; Usumez, S.; Basciftci, F.A. Rapid maxillary expansion. Is it better in the mixed or in the permanent dentition? Angle Orthod. 2003, 73, 654–661. [Google Scholar]
- Cerruto, C.; Ugolini, A.; Di Vece, L.; Doldo, T.; Caprioglio, A.; Silvestrini-Biavati, A. Cephalometric and dental arch changes to Haas-type rapid maxillary expander anchored to deciduous vs permanent molars: A multicenter, randomized controlled trial. J. Orofac. Orthop. 2017, 78, 385–393. [Google Scholar] [CrossRef]
- Ugolini, A.; Cerruto, C.; Di Vece, L.; Ghislanzoni, L.H.; Sforza, C.; Doldo, T.; Silvestrini-Biavati, A.; Caprioglio, A. Dental arch response to Haas-type rapid maxillary expansion anchored to deciduous vs permanent molars: A multicentric randomized controlled trial. Angle Orthod. 2015, 85, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Mutinelli, S.; Cozzani, M.; Manfredi, M.; Bee, M.; Siciliani, G. Dental arch changes following rapid maxillary expansion. Eur. J. Orthod. 2008, 30, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Guest, S.S.; McNamara, J.A., Jr.; Baccetti, T.; Franchi, L. Improving Class II malocclusion as a side-effect of rapid maxillary expansion: A prospective clinical study. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 582–591. [Google Scholar] [CrossRef]
- Abate, A.; Cavagnetto, D.; Rusconi, F.M.E.; Cressoni, P.; Esposito, L. Safety and Effects of the Rapid Maxillary Expander on Temporomandibular Joint in Subjects Affected by Juvenile Idiopathic Arthritis: A Retrospective Study. Children 2021, 8, 33. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Fastuca, R.; Portelli, M.; Militi, A.; Bellocchio, M.; Spinuzza, P.; Briguglio, F.; Caprioglio, A.; Nucera, R. Effects of rapid vs. slow maxillary expansion on nasal cavity dimensions in growing subjects: A methodological and reproducibility study. Eur. J. Paediatr. Dent. 2017, 18, 299–304. [Google Scholar]
- Lione, R.; Ballanti, F.; Franchi, L.; Baccetti, T.; Cozza, P. Treatment and posttreatment skeletal effects of rapid maxillary expansion studied with low-dose computed tomography in growing subjects. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Braun, S.; Bottrel, J.A.; Lee, K.G.; Lunazzi, J.J.; Legan, H.L. The biomechanics of rapid maxillary sutural expansion. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Halıcıoğlu, K.; Yavuz, I. Comparison of the effects of rapid maxillary expansion caused by treatment with either a memory screw or a Hyrax screw on the dentofacial structures—Transversal effects. Eur J. Orthod. 2014, 36, 140–149. [Google Scholar]
Cranial References | ||
---|---|---|
Foramen spinosum (RFs, LFs) | Geometric center of the upper and smallest circumference with defined borders viewed axially on the foramen spinosum. | |
ELSA | Midpoint on a line connecting left and right foramen spinosum landmarks. | |
Auditory External Meatus (RPo, LPo) | Most upper, posterior and lateral point of Auditory External Meatus circumference with defined borders viewed saggitally. | |
Skeletal landmarks | ||
Nasal Floor (RNF, LNF) | Junction of palatal cortical alveolar bone and lateral cortical nasal bone located in the coronal scan passing through the PC of the first permanent molar. | |
Lateral pterygoid (RLPt, LLPt) | Most posterior border of the pterygoid lateral plate at the vertical level of the palatal shelves. | |
Dental landmarks | ||
Pulp chamber (PC tooth #) | Center of pulp chamber floor viewed in all 3 planes of space. | |
Furca (Furca tooth #) | Buccal furcation of upper first permanent molars. | |
Skeletal Landmarks | |
---|---|
Nasal Floor width (NF) | Distance between RNF and LNF points |
Pterygoid width (LPt) | Distance between RLPt and LLPt points |
Dental landmarks | |
Upper first permanent molar distance (6 + 6) | Distance between 1.6 and 2.6 PC points |
Upper second primary molar distance (E + E) | Distance between 5.5 and 6.5 PC points |
Furca distance (FURCA) | Distance between 1.6 and 2.6 Furca points |
Axis | X | Y | Z | |
---|---|---|---|---|
Landmark | ||||
Cranial | ||||
RFs | 0.39 | 4.18 | 0.28 | |
LFs | 0.32 | 4.04 | 0.27 | |
ELSA | 0.29 | 0.24 | 0.19 | |
Rpo | 0.31 | 5.57 | 0.37 | |
Lpo | 0.27 | 0.12 | 0.64 | |
Skeletal | ||||
RNF | 0.29 | 0.61 | 0.23 | |
LNF | 0.17 | 0.43 | 0.23 | |
RLpt | 0.07 | 0.35 | 0.37 | |
LLpt | 0.03 | 0.27 | 0.36 | |
Dental | ||||
PC 1.6 | 0.21 | 0.43 | 0.29 | |
PC 2.6 | 0.21 | 0.24 | 0.19 | |
PC 5.5 | 0.27 | 0.33 | 0.29 | |
PC 6.5 | 0.25 | 0.17 | 0.29 | |
FURCA 1.6 | 0.41 | 0.19 | 0.23 | |
FURCA 2.6 | 0.32 | 0.28 | 0.22 |
Transversal (x) | Sagittal (y) | Vertical (z) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hyrax | Haas | Hyrax | Haas | Hyrax | Haas | |||||||||||||
Mean | SD | p | Mean | SD | p | Mean | SD | p | Mean | SD | p | Mean | SD | p | Mean | SD | p | |
RFs | 0.13 | 0.41 | 0.11 | 0.02 | 0.72 | 0.89 | −0.43 | 1.11 | 0.99 | −0.61 | 1.98 | 0.54 | −0.69 | 0.82 | 0.36 | −0.08 | 0.70 | 0.75 |
LFs | −0.33 | 0.48 | 0.09 | 0.05 | 0.90 | 0.88 | 0.16 | 1.09 | 0.70 | 0.61 | 1.61 | 0.32 | −0.29 | 0.62 | 0.23 | −0.11 | 0.66 | 0.38 |
ELSA | 0.03 | 0.30 | 0.76 | −0.07 | 0.27 | 0.49 | −0.13 | 0.15 | 0.06 | 0.05 | 0.25 | 0.57 | −0.05 | 0.30 | 0.63 | −0.05 | 0.31 | 0.63 |
RPo | 0.00 | 0.05 | 0.13 | 0.01 | 0.05 | 0.55 | 0.40 | 1.14 | 0.35 | −0.06 | 2.35 | 0.95 | 0.30 | 0.50 | 0.13 | 0.33 | 0.73 | 0.24 |
LPo | −0.11 | 0.26 | 0.29 | −0.09 | 0.25 | 0.32 | 0.06 | 0.73 | 0.83 | 0.39 | 1.32 | 0.43 | 0.32 | 0.83 | 0.31 | 0.39 | 1.32 | 0.43 |
Hyrax | Haas | Hyrax vs. Haas | |||
---|---|---|---|---|---|
Measurements | Mean | SD | Mean | SD | p |
Skeletal | |||||
NF | 29.55 | 1.96 | 28.17 | 2.52 | 0.227 |
LPt | 50.74 | 4.53 | 49.51 | 3.64 | 0.544 |
Dental | |||||
6 + 6 | 42.30 | 3.72 | 39.06 | 3.13 | 0.067 |
E + E | 39.20 | 2.95 | 35.85 | 2.26 | 0.018 * |
FURCA | 47.52 | 4.04 | 38.97 | 3.28 | <0.001 * |
Hyrax | Haas | Hyrax vs. Haas | |||||
---|---|---|---|---|---|---|---|
Measurements | Mean | SD | p | Mean | SD | p | p |
Skeletal | |||||||
NF | 1.76 | 0.86 | <0.001 * | 2.97 | 1.84 | 0.003 * | 0.081 |
LPt | 1.93 | 1.69 | 0.006 * | 1.91 | 1.12 | 0.002 * | 0.998 |
Dental | |||||||
6 + 6 | 3.42 | 1.50 | <0.001 * | 4.57 | 2.32 | 0.001 * | 0.222 |
E + E | 6.47 | 1.54 | <0.001 * | 6.80 | 2.26 | <0.001 * | 0.724 |
FURCA | 4.36 | 1.79 | <0.001 * | 4.14 | 2.58 | 0.003 * | 0.837 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafin, M.; Esposito, L.; Conti, V.; Fastuca, R.; Lagravère, M.; Caprioglio, A. CBCT Comparison of Dentoskeletal Effects of Haas-Type and Hyrax-Type Expanders Using Deciduous Teeth as Anchorage: A Randomized Clinical Trial. Appl. Sci. 2021, 11, 7110. https://doi.org/10.3390/app11157110
Serafin M, Esposito L, Conti V, Fastuca R, Lagravère M, Caprioglio A. CBCT Comparison of Dentoskeletal Effects of Haas-Type and Hyrax-Type Expanders Using Deciduous Teeth as Anchorage: A Randomized Clinical Trial. Applied Sciences. 2021; 11(15):7110. https://doi.org/10.3390/app11157110
Chicago/Turabian StyleSerafin, Marco, Luca Esposito, Viviana Conti, Rosamaria Fastuca, Manuel Lagravère, and Alberto Caprioglio. 2021. "CBCT Comparison of Dentoskeletal Effects of Haas-Type and Hyrax-Type Expanders Using Deciduous Teeth as Anchorage: A Randomized Clinical Trial" Applied Sciences 11, no. 15: 7110. https://doi.org/10.3390/app11157110
APA StyleSerafin, M., Esposito, L., Conti, V., Fastuca, R., Lagravère, M., & Caprioglio, A. (2021). CBCT Comparison of Dentoskeletal Effects of Haas-Type and Hyrax-Type Expanders Using Deciduous Teeth as Anchorage: A Randomized Clinical Trial. Applied Sciences, 11(15), 7110. https://doi.org/10.3390/app11157110