A Case Study of a Large Unstable Mass Stabilization: “El Portalet” Pass at the Central Spanish Pyrenees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical and Geological Situation
2.2. Previous Field Investigations
2.3. Corrective Measures
- A slight modification of the slope geometry by means of the excavations of intermediate areas (benches) on the slope.
- Installation of deep drainage measures (Californian drains) as well as ditches to improve slope drainage and remove water coming from seepage and runoff; in total, 47 single drains were installed with a separation of 15 m; the horizontal slope was 6% following Serrano and Gómez [29] and Forrester [30]. Drains were executed with slotted PVC pipes with a thickness of 1.5 mm and a diameter of 75 mm.
- Implementation of slope conservation and stabilization measures such as slope profiling and re-vegetation.
- Performance of a flexible retaining wall at the slope toe; wall height was 6 m from the ground and 9.2 m from the bottom of the foundation and its width was found between 3.5 and 4.1 m; its vertical slope was 6:10.
2.4. Satellite Surveys
2.5. New Field Investigations
2.6. Limit Equilibrium Analysis
3. Results
3.1. Field Investigations and Satellite Surveys
3.2. Limit Equilibrium Analysis
3.3. Drainage Evolution
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González de Vallejo, L.I.; Beltrán, F.J.; Ferrer, M. Estabilización y control de un gran deslizamiento en rocas lutíticas. In Proceedings of the III National Symposium on Slopes and Unstable Hillsides, La Coruña, Spain, 3 December 1992. [Google Scholar]
- Jiang, Q.; Qi, Z.; Wei, W.; Zhou, C. Stability assessment of a high rock slope by strength reduction finite element method. Bull. Eng. Geol. Environ. 2014, 74, 1153–1162. [Google Scholar] [CrossRef]
- Moreno, J.; Peña, A.; Pinto, H. Dynamic Barriers for Protections against Rocks Falls. Rev. Construcción 2016, 15, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, N.N. Assessment of the effectiveness of corrective measures in relation to geological conditions and types of slope movement. Bull. Int. Asocc. Eng. Geol. 1977, 16, 131–155. [Google Scholar] [CrossRef]
- D’Acunto, B.; Urciuoli, G. Groundwater regime in a slope stabilized by drain trenches. Math. Comput. Model 2006, 43, 754–765. [Google Scholar] [CrossRef]
- Cotecchia, F.; Lollino, P.; Petti, R. Efficacy of drainage trenches to stabilise deep slow landslides. Géotech. Lett. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Conte, E.; Troncone, A. A performance-based method for the design of drainage trenches used to stabilize slopes. Eng. Geol. 2018, 239, 158–166. [Google Scholar] [CrossRef]
- Wei, Z.L.; Wang, D.F.; Xu, H.D.; Sun, H.Y. Clarifying the effectiveness of drainage tunnels in landslide controls based on high-frequency in-site monitoring. Bull. Eng. Geol. Environ. 2020, 79, 3289–3305. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Lamanna, G.; Conte, E. Prediction of rainfall-induced landslide movements in the presence of stabilizing piles. Eng. Geol. 2021, 288, 106143. [Google Scholar] [CrossRef]
- Wei, Z.L.; Lü, Q.; Sun, H.Y.; Shang, Y.Q. Estimating the rainfall threshold of a deep-seated landslide by integrating models for predicting the groundwater level and stability analysis of the slope. Eng. Geol. 2019, 253, 14–26. [Google Scholar] [CrossRef]
- Zhi, M.M.; Shang, Y.Q.; Zhao, Y.; Lü, Q.; Sun, H.Y. Investigation and monitoring on a rainfall-induced deep-seated landslide. Arab. J. Geosci. 2016, 9, 182. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Rosone, M.; Ziccarelli, M.; Ferrari, A.; Camillo, A. On the reactivation of a large landslide induced by rainfall in highly fissured clays. Eng. Geol. 2018, 235, 20–38. [Google Scholar] [CrossRef]
- Herrera, G.; Fernández-Merodo, J.A.; Mulas, J.; Pastor, M.; Luzi, G.; Monserrat, O. A landslide forecasting model using ground based SAR data: The Portalet case study. Eng. Geol. 2009, 105, 220–230. [Google Scholar] [CrossRef]
- Torrijo, F.J.; Sarasa, A. Informe Sobre las Inestabilidades Detectadas en Una Ladera en las Inmediaciones del Puerto de Portalet (Sallent de Gállego, Huesca), Donde se Está Ejecutando la Construcción de un Futuro Aparcamiento; Technical Report; Zaragoza Ilustre Colegio Oficial de Geólogos de Aragón (ICOG): Zaragoza, Spain, 2005. [Google Scholar]
- García Ruiz, J.M. Mapa Geomorfológico de Sallent (Huesca) a Escala 1:50,000; Geoforma Ediciones: Logroño, Spain, 1999. [Google Scholar]
- García Ruiz, J.M.; Chueca, J.; Julián, A. Los movimientos en masa del alto Gállego. In Geografía Física de Aragón. Aspectos Generales y Temáticos; Peña, J.L., Longares, L.A., Sánchez, M., Eds.; Universidad de Zaragoza e Institución Fernando el Católico: Zaragoza, Spain, 2004; pp. 141–152. [Google Scholar]
- Torrijo, F.J.; Andrés, J.; Sarasa, A.; Bona, M.E. Estudio y propuesta de corrección de las inestabilidades detectadas en la zona de “El Portalet” (Huesca). In Proceedings of the VII National Symposium on Slopes and Unstable Hillsides, Barcelona, Spain, 27–30 October 2009. [Google Scholar]
- Torrijo, F.J.; Rodrigo, M.; Esteban, C. Instrumentación y corrección de las inestabilidades detectadas en la zona de “El Portalet” (Huesca, España). In Proceedings of the VIII Chile Conference on Geotechnical Engineering, Santiago, Chile, 26–29 November 2014. [Google Scholar]
- Chistaras, B.; Argyriadis, M.; Moraiti, E. Landslides in the marly slope of the Kapsali area in Kithira Island, Greece. Bull. Eng. Geol. Environ. 2014, 73, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Herrera, G.; Notti, D.; García-Davalillo, J.C.; Mora, O.; Cooksley, G.; Sánchez, O. Analysis with C-and X-band satellite SAR data of the Portalet landslide area. Landslides 2011, 8, 195–206. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Notti, D.; García-Davalillo, J.C.; Herrera, G.; Mora, O. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat. Hazards Earth Syst. Sci. 2010, 10, 1865–1875. [Google Scholar] [CrossRef]
- García-Davalillo, J.C.; Herrera, G.; Notti, D.; Strozzi, T.; Álvarez-Fernández, I. DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: The Tena Valley case study. Landslides 2014, 11, 225–246. [Google Scholar] [CrossRef]
- Galé, C. Evolución Geoquímica, Petrográfica y de Condiciones Geodinámicas de los Magmatismos Pérmicos en los Sectores Central y Occidental del Pirineo. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2005. [Google Scholar]
- Herrero, L. Caracterización de Inestabilidades de Ladera y Propuesta de Actuación en Sallent de Gállego. Master’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2010. [Google Scholar]
- I.T.G.E. Mapa Geológico de España a Escala 1:50,000; Hoja 145; Sallent: Madrid, Spain, 1990; p. 54, 1 mapa. [Google Scholar]
- NCSR-02. Seismic Resistance Construction Standard; Spanish Ministry of Public Works: Madrid, Spain, 2002. [Google Scholar]
- Serrano, P.A.; Gómez, R. Métodos de estabilización de taludes en suelos. In Manual de Estabilización y Revegetación de Taludes; López Jimeno, C., Ed.; U.D. Proyectos, E.T.S.I. Minas, Universidad Politécnica de Madrid: Madrid, Spain, 1999; pp. 151–244. [Google Scholar]
- Forrester, K. Subsurface Drainage for Slope Stabilization; ASCE Press: Reston, VA, USA, 2000; p. 208. [Google Scholar]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Invere. Probl. 1998, 14, R1–R154. [Google Scholar] [CrossRef]
- Noferini, L.; Pieraccini, M.; Mecatti, D.; Macaluso, G.; Atzeni, C.; Mantovani, M.; Marcato, G.; Pasuto, A.; Silvano, S.; Tagliavini, F. Using GB-SAR technique to monitor slow moving landslide. Eng. Geol. 2007, 95, 88–98. [Google Scholar] [CrossRef]
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Eng. Geol. 2003, 68, 15–30. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodríguez, E. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Arnaud, A.; Adam, N.; Hanssen, R.; Inglada, J.; Duro, J.; Closa, J. ASAR ERS interferometric phase continuity. In Proceedings of the IGARSS 2003, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 23. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IGARSS 2003, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lundgren, P.; Casu, F.; Manzo, M.; Pepe, A.; Berardino, P.; Sansosti, E. Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophys. Res. Lett. 2004, 31, L04602. [Google Scholar] [CrossRef] [Green Version]
- Mora, O.; Mallorquí, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Prati, C.; Ferretti, A.; Perissin, D. Recent advances on surface ground deformation measurement by means of repeated spaceborne SAR observations. J. Geodyn. 2010, 49, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.A.; Bürgmann, R. Time-dependent land uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Atmos. 2003, 108, 2416. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.W. The use of slip circle in the stability analysis of slopes. Geotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Morgenstern, N.R.; Price, V. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, J. Landslide types and processes. In Landslides Investigation and Mitigation Special Report 247; Turner, K., Schuster, R., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–90. [Google Scholar]
- Glade, T.; Crozier, M.J. The nature of landslide hazard impact. In Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M.J., Eds.; Wiley: Chichester, UK, 2005; pp. 43–74. [Google Scholar]
- RocScience. Slide Manual; RocScience, Inc.: Toronto, ON, Canada, 2005. [Google Scholar]
- Lastrada, E.; Garzón-Roca, J.; Cobos, G.; Torrijo, F.J. A Decrease in the Regulatory Effect of Snow-Related Phenomena in Spanish Mountain Areas Due to Climate Change. Water 2021, 13, 1550. [Google Scholar] [CrossRef]
- Garzón-Roca, J.; Torrijo, F.J.; Company, J.; Capa, V. Designing Soil-Nailed Walls Using the Amherst Wall Considering Problematic Issues during Execution and Service Life. Int. J. Geomech. ASCE 2019, 19, 05019006. [Google Scholar] [CrossRef]
Geotechnical Unit | Depth [m] | SUCS | WP | PI | γ [kN/m3] | W [%] | c [kPa] | φ [°] | UCS [MPa] |
---|---|---|---|---|---|---|---|---|---|
Colluvial deposits | 2–10 | GM-GC | 30.5 | 8.4 | 21.0 | 7.0 | − | 29.0 | − |
Green sand-clay | 2–6 | SC | 32.1 | 10.4 | 20.4 | 14.0 | − | 18.0 | − |
Black sand-clay | 2–6 | SC-GC | 30.9 | 10.6 | 22.2 | 8.1 | − | 25.0 | − |
Fragmented calcareous rocks and slates | 2–6 | GC-SC | 33.6 | 12.9 | 21.7 | 6.7 | − | 38.0 | − |
Fault breccia | − | − | − | − | 23.0 | 6.0 | 20.0 | 25.0 | − |
Slate rock | − | − | − | − | 27.7 | − | − | − | 12.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobos, G.; Eguibar, M.Á.; Torrijo, F.J.; Garzón-Roca, J. A Case Study of a Large Unstable Mass Stabilization: “El Portalet” Pass at the Central Spanish Pyrenees. Appl. Sci. 2021, 11, 7176. https://doi.org/10.3390/app11167176
Cobos G, Eguibar MÁ, Torrijo FJ, Garzón-Roca J. A Case Study of a Large Unstable Mass Stabilization: “El Portalet” Pass at the Central Spanish Pyrenees. Applied Sciences. 2021; 11(16):7176. https://doi.org/10.3390/app11167176
Chicago/Turabian StyleCobos, Guillermo, Miguel Ángel Eguibar, Francisco Javier Torrijo, and Julio Garzón-Roca. 2021. "A Case Study of a Large Unstable Mass Stabilization: “El Portalet” Pass at the Central Spanish Pyrenees" Applied Sciences 11, no. 16: 7176. https://doi.org/10.3390/app11167176
APA StyleCobos, G., Eguibar, M. Á., Torrijo, F. J., & Garzón-Roca, J. (2021). A Case Study of a Large Unstable Mass Stabilization: “El Portalet” Pass at the Central Spanish Pyrenees. Applied Sciences, 11(16), 7176. https://doi.org/10.3390/app11167176