An Augmented Warning System for Pedestrians: User Interface Design and Algorithm Development
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Interface Development
2.2. Projection Algorithms Development
2.3. Evaluation
3. Result
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Road Traffic Injuries. 27 April 2020. Available online: https://www.who.int/health-topics/road-safety#tab=tab_1 (accessed on 26 June 2021).
- Peden, M.; Scurfield, R.; Sleet, D.; Mathers, C.; Jarawan, E.; Hyder, A.A.; Hyder, A.A.; Mohan, D.; Jarawan, E. World Report on Road Traffic Injury Prevention; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Retting, R.; Schwartz, S. Pedestrian Traffic Fatalities by State: 2017 Preliminary Data; Governors Highway Safety Association: Washington, DC, USA, 2017. [Google Scholar]
- Basch, C.H.; Ethan, D.; Rajan, S.; Basch, C.E. Technology-related distracted walking behaviours in Manhattan’s most dangerous intersections. Inj. Prev. 2014, 20, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.L.; Troyer, D. Pedestrian injuries due to mobile phone use in public places. Accid. Anal. Prev. 2013, 57, 91–95. [Google Scholar] [CrossRef] [PubMed]
- National Transportation Safety Board. Preliminary Report Highway HWY18MH010; National Transportation Safety Board: Washington, DC, USA, 2018. [Google Scholar]
- Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Dhondge, K.; Song, S.; Choi, B.-Y.; Park, H. WiFiHonk: Smartphone-Based Beacon Stuffed WiFi Car2X-Communication System for Vulnerable Road User Safety. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, T.; Cardone, G.; Corradi, A.; Torresani, L.; Campbell, A.T. WalkSafe: A pedestrian safety app for mobile phone users who walk and talk while crossing roads. In Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications-HotMobile ’12, San Diego, CA, USA, 28–29 February 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Sarter, N.B. Multimodal information presentation: Design guidance and research challenges. Int. J. Ind. Ergon. 2006, 36, 439–445. [Google Scholar] [CrossRef]
- Wang, M.; Liao, Y.; Lyckvi, S.L.; Chen, F. How drivers respond to visual vs. auditory information in advisory traffic information systems. Behav. Inf. Technol. 2019, 39, 1308–1319. [Google Scholar] [CrossRef] [Green Version]
- Costanza, E.; Inverso, S.A.; Pavlov, E.; Allen, R.; Maes, P. eye-q: Eyeglass peripheral display for subtle intimate notifications. In Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services-MobileHCI ’06, Helsinki, Finland, 12–15 September 2006; p. 211. [Google Scholar] [CrossRef]
- Caudell, T.P.; Mizell, D.W. Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 1992; pp. 659–669. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 342–377. [Google Scholar] [CrossRef]
- Henrysson, A.; Ollila, M.; Billinghurst, M. Mobile phone based AR scene assembly. In Proceedings of the 4th International Conference on Mobile and Ubiquitous Multimedia-MUM ’05, Christchurch, New Zealand, 8–10 December 2005; p. 95. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Wu, X.; Gabbard, J.L.; Polys, N.F. Exploring head-up augmented reality interfaces for crash warning systems. In Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications-AutomotiveUI’13, Eindhoven, The Netherlands, 28–30 October 2013; pp. 224–227. [Google Scholar] [CrossRef]
- Plavsic, M.; Bubb, H.; Duschl, M.; Tonnis, M.; Klinker, G. Ergonomic Design and Evaluation of Augmented Reality Based Cautionary Warnings for Driving Assistance in Urban Environments. Presented at the 17th World Congress on Ergonomics (International Ergonomics Association, IEA), Beijing, China, 9–14 August 2009. [Google Scholar]
- Google. GLASS ENTERPRISE EDITION 2 Tech Specs. 22 July 2021. Available online: https://www.google.com/glass/tech-specs/ (accessed on 26 June 2021).
- Dünser, A.; Grasset, R.; Seichter, H.; Billinghurst, M. Applying HCI Principles to AR Systems Design. Presented at the 2nd International Workshop at the IEEE Virtual Reality 2007, Charlotte, NC, USA, 11 March 2007. [Google Scholar]
- Boff, K.R.; Lincoln, J.E. Engineering Data Compendium: Human Perception and Performance; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Gregory, R.L. The Intelligent Eye; Weidenfeld & Nicolson: London, UK, 1970. [Google Scholar]
- Galitz, W.O. The essential Guide to User Interface Design; Wiley: Indianapolis, IN, USA, 1997. [Google Scholar]
- Clifton, I.G. Android user Interface Design: Turning Ideas and Sketches into Beautifully Designed Apps; Addison-Wesley: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Wogalter, M.S.; Conzola, V.C.; Smith-Jackson, T.L. Research-based guidelines for warning design and evaluation. Appl. Ergon. 2002, 33, 219–230. [Google Scholar] [CrossRef]
- Wogalter, M.S.; Desaulniers, D.R.; Brelsford, J.W. Consumer Products: How are the Hazards Perceived? Proc. Hum. Factors Soc. Annu. Meet. 1987, 31, 615–619. [Google Scholar] [CrossRef]
- Wogalter, M.S.; Godfrey, S.S.; Fontenelle, G.A.; Desaulniers, D.R.; Rothstein, P.R.; Laughery, K.R. Effectiveness of Warnings. Hum. Factors J. Hum. Factors Ergon. Soc. 1987, 29, 599–612. [Google Scholar] [CrossRef]
- Tong, Y.; Jia, B. An Augmented-reality-based Warning Interface for Pedestrians: User Interface Design and Evaluation. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 1834–1838. [Google Scholar] [CrossRef]
- Turner, A.; Zeller, M.; Cowley, E.; Bray, B. Hologram stability. Microsoft, 3 July 2018. Available online: https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability (accessed on 26 June 2021).
- Redert, A.; Hendriks, E.; Biemond, J. Correspondence estimation in image pairs. IEEE Signal Process. Mag. 1999, 16, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Maynard, P. Drawing Distinctions: The Varieties of Graphic Expression; Cornell Univ. Press: Ithaca, NY, USA, 2005. [Google Scholar]
- Horaud, R.; Dornaika, F.; Lamiroy, B.; Christy, S. Object Pose: The Link between Weak Perspective, Paraperspective and Full Perspective. Int. J. Comput. Vis. 1997, 22, 173–189. [Google Scholar] [CrossRef]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision, 2nd ed.; PWS Pub.: Pacific Grove, CA, USA, 1999. [Google Scholar]
- Sony. Smarteyeglass-Sed-E1 Specifications. 2018. Available online: https://developer.sony.com/develop/smarteyeglass-sed-e1/specifications (accessed on 26 June 2021).
Time | Vehicle Point | Conflict Point | ||
---|---|---|---|---|
x-Axis | y-Axis | x-Axis | y-Axis | |
1 s | 0.000 | 0.542 | 1.155 | 0.460 |
2 s | −0.834 | 0.580 | 1.155 | 0.218 |
3 s | −1.155 | 0.523 | 1.155 | −0.078 |
4 s | −1.155 | 0.288 | 0.171 | −0.091 |
5 s | −1.155 | 0.255 | 0.089 | −0.107 |
6 s | −1.155 | 0.175 | −0.108 | −0.143 |
7 s | −1.155 | 0.063 | −0.355 | −0.194 |
8 s | −1.155 | 0.272 | 0.029 | −0.278 |
Time | Distance from Projected Vehicle Points to the Ideal Path | Distance from Projected Conflict Points to the Ideal Path | Average Distance |
---|---|---|---|
1 s | 0.526 | 0.504 | 0.515 |
2 s | 0.418 | 0.315 | 0.367 |
3 s | 0.086 | 0.065 | 0.076 |
4 s | 0.142 | 0.188 | 0.165 |
5 s | 0.174 | 0.223 | 0.199 |
6 s | 0.227 | 0.292 | 0.259 |
7 s | 0.176 | 0.298 | 0.237 |
8 s | 0.088 | 0.333 | 0.210 |
Mean | 0.253 |
Time | Projected Slope | Ideal Slope | Difference |
---|---|---|---|
1 s | −0.071 | −0.052 | 0.019 |
2 s | −0.182 | −0.130 | 0.052 |
3 s | −0.260 | −0.251 | 0.009 |
4 s | −0.286 | −0.251 | 0.035 |
5 s | −0.291 | −0.251 | 0.040 |
6 s | −0.304 | −0.240 | 0.065 |
7 s | −0.322 | −0.167 | 0.154 |
8 s | −0.465 | −0.251 | 0.214 |
Mean | 0.074 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Jia, B.; Bao, S. An Augmented Warning System for Pedestrians: User Interface Design and Algorithm Development. Appl. Sci. 2021, 11, 7197. https://doi.org/10.3390/app11167197
Tong Y, Jia B, Bao S. An Augmented Warning System for Pedestrians: User Interface Design and Algorithm Development. Applied Sciences. 2021; 11(16):7197. https://doi.org/10.3390/app11167197
Chicago/Turabian StyleTong, Yourui, Bochen Jia, and Shan Bao. 2021. "An Augmented Warning System for Pedestrians: User Interface Design and Algorithm Development" Applied Sciences 11, no. 16: 7197. https://doi.org/10.3390/app11167197
APA StyleTong, Y., Jia, B., & Bao, S. (2021). An Augmented Warning System for Pedestrians: User Interface Design and Algorithm Development. Applied Sciences, 11(16), 7197. https://doi.org/10.3390/app11167197