Hot Carrier Photocurrent through MOS Structure
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sherwood, C.P.; Elkington, D.C.; Dickinson, M.R.; Belcher, W.J.; Dastoor, P.C.; Feron, K.; Brichta, A.M.; Lim, R.; Griffith, M.J. Organic semiconductors for optically triggered neural interfacing: The impact of device architecture in determining response magnitude and polarity. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 7400212. [Google Scholar] [CrossRef]
- Mokni, M.; Pedroli, F.; D’Ambrogio, G.; Le, M.-Q.; Cottinet, P.-J.; Capsal, J.-F. High-Capacity, Fast-Response, and Photocapacitor-Based Terpolymer Phosphor Composite. Polymers 2020, 12, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, T.N.; Kawashima, N.; Miyasaka, T. A high-voltage dye-sensitized photocapacitor of a three-electrode system. Chem. Commun. 2005, 26, 3346–3348. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Photo-powered integrated supercapacitors: A review on recent developments, challenges and future perspectives. J. Mater. Chem. A 2021, 9, 8248–8278. [Google Scholar]
- Gao, K.; Ti, D.; Zhang, Z. A photocapacitor with high working voltage and energy density. Sustain. Energy Fuels 2019, 3, 1937–1942. [Google Scholar] [CrossRef]
- Jin, W.-Y.; Ovhal, M.M.; Lee, H.B.; Tyagi, B.; Kang, J.-W. Scalable, All-Printed Photocapacitor Fibers and Modules based on Metal-Embedded Flexible Transparent Conductive Electrodes for Self-Charging Wearable Applications. Adv. Energy Mater. 2020, 11, 2003509. [Google Scholar] [CrossRef]
- Malyshev, S.A.; Galwas, B.A.; Piotrowski, J.; Chizh, A.L.; Szczepaniak, Z.R. Photovaractor for remote optical control of microwave circuits. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 201–203. [Google Scholar] [CrossRef]
- Zang, J.; Morgan, J.S.; Xie, X.; Sun, K.; Li, Q.; Beling, A.; Campbell, J.C. InP/InGaAs Photovaractor. J. Lightwave Technol. 2018, 36, 1661–1665. [Google Scholar] [CrossRef]
- Kancleris, Ž.; Ragulis, P.; Simniškis, R.; Dagys, M. Wide band waveguide sensor for microwave pulse measurement. Lith. J. Phys. 2013, 53, 99–103. [Google Scholar] [CrossRef]
- Ašmontas, S.; Anbinderis, M.; Čerškus, A.; Gradauskas, J.; Sužiedėlis, A.; Šilėnas, A.; Širmulis, E.; Umansky, V. Gated bow-tie diode for microwave to sub-terahertz detection. Sensors 2020, 20, 829. [Google Scholar] [CrossRef] [Green Version]
- Gradauskas, J.; Širmulis, E.; Ašmontas, S.; Sužiedėlis, A.; Dashevsky, Z.; Kasiyan, V. Peculiarities of high power infrared detection on narrow-gap semiconductor p-n junctions. Acta Phys. Pol. A 2011, 119, 237–240. [Google Scholar] [CrossRef]
- Gradauskas, J.; Sužiedėlis, A.; Ašmontas, S.; Kazlauskaitė, V.; Lučun, A.; Vingelis, M. Sensitive planar semiconductor detector from microwave to IR applications. IEEE Sens. J. 2010, 10, 662–667. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Chen, X.; Zhou, J.; Hu, W.; Wang, X.; Li, J.; Huang, Z.; Zhou, W.; Tang, W.; et al. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection. Carbon 2018, 130, 233–240. [Google Scholar] [CrossRef]
- Conibeer, G. Third-generation photovoltaics. Mater. Today 2007, 10, 42–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.; Liu, S.; Zhang, B.; Lin, K.; Zhang, J.; Conibeer, G. A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar cells. Sol. Energy Mater. Sol. Cells 2021, 225, 111073. [Google Scholar] [CrossRef]
- Ferry, D.K.; Goodnick, S.M.; Whiteside, V.R.; Sellers, I.R. Challenges, myths, and opportunities in hot carrier solar cells. J. Appl. Phys. 2020, 128, 220903. [Google Scholar] [CrossRef]
- Mikhaliak, M.M.; Vesockas, A.P.; Kalvėnas, S.P. Dependence of hot carrier surface thermoemf on surface band bending in electronic silicon. Semiconductors 1979, 13, 1512–1517. [Google Scholar]
- Ašmontas, S.; Olekas, A. Investigation of the kinetics of the thermo e.m.f. of hot carriers in reverse biased p-n junction. Lith. J. Phys. 1991, 31, 213–219. [Google Scholar]
- Ašmontas, S.; Gradauskas, J.; Seliuta, D.; Šilėnas, A.; Širmulis, E.; Marmur, I.Y. Photoelectrical properties of non-uniform GaAs structures under infrared laser illiumination. Proc. SPIE 1996, 3093, 35–40. [Google Scholar]
- Ašmontas, S.; Gradauskas, J.; Seliuta, D.; Širmulis, E. Photoresponse in nonuniform semiconductor junctions under infrared laser excitation. Proc. SPIE 1998, 3890, 125–131. [Google Scholar]
- Umeno, M.; Sugito, Y.; Jimbo, T.; Hattori, H.; Amemiya, Y. Hot photo-carrier and hot electron effects in p-n junctions. Solid State Electron. 1978, 21, 191–195. [Google Scholar] [CrossRef]
- Ašmontas, S.; Širmulis, E.; Stonys, S. Investigation of photoemf induced across germanium p-n junction under pulsed CO2 laser light. Lith. J. Phys. 1984, 24, 76–82. [Google Scholar]
- Gradauskas, J.; Ašmontas, S.; Sužiedėlis, A.; Šilėnas, A.; Vaičikauskas, V.; Čerškus, A.; Širmulis, E.; Žalys, O.; Masalskyi, O. Influence of hot carrier and thermal components on photovoltage formation across the p–n junction. Appl. Sci. 2020, 10, 7483. [Google Scholar] [CrossRef]
- Marmur, I.Y.; Novikov, Y.B.; Oksman, Y.A. Photocapacitive effect in closed p-n junctions. Semiconductors 1988, 22, 87–92. [Google Scholar]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: New York, NY, USA, 1981. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradauskas, J.; Ašmontas, S. Hot Carrier Photocurrent through MOS Structure. Appl. Sci. 2021, 11, 7211. https://doi.org/10.3390/app11167211
Gradauskas J, Ašmontas S. Hot Carrier Photocurrent through MOS Structure. Applied Sciences. 2021; 11(16):7211. https://doi.org/10.3390/app11167211
Chicago/Turabian StyleGradauskas, Jonas, and Steponas Ašmontas. 2021. "Hot Carrier Photocurrent through MOS Structure" Applied Sciences 11, no. 16: 7211. https://doi.org/10.3390/app11167211
APA StyleGradauskas, J., & Ašmontas, S. (2021). Hot Carrier Photocurrent through MOS Structure. Applied Sciences, 11(16), 7211. https://doi.org/10.3390/app11167211