Performance of Communication- and Computation-Intensive SaaS on the OpenStack Cloud
Abstract
:Featured Application
Abstract
1. Introduction
2. Discrete Element Method Software
2.1. Considered Model of DEM
2.2. Parallel Implementation
3. OpenStack Cloud Infrastructure and Services
4. Results and Discussion
4.1. Description of the Benchmark
4.2. Computational Load
4.3. Communication
4.4. Parallel Performance
4.5. Overhead of Cloud Infrastructure
5. Conclusions
- The performance of the communication- and computation-intensive DEM SaaS highly depends on MPI communication issues, load mapping to virtual resources based on the multicore architecture, and the overhead of the cloud infrastructure.
- Casual mapping of particle subsets to multicore hardware resources can increase MPI communication time and decrease the parallel speedup. In the case of the benchmark with the thinnest ghost layer, improved mapping based on spatially connected subsets reduced the internode data transfer by 34.4% of the data transfer required by the casual mapping, decreased the communication time by 2.47 times, and raised the parallel efficiency from 0.67 to 0.78 for 12 processes.
- The performance analysis revealed that interprocess MPI communication highly influences the parallel performance of the DEM SaaS. A three-fold increase in the ghost layer thickness and the subsequent increase in transferred data decreased the parallel speedup from 12.3 to 9.4 for 16 processes. Significantly, the communication-to-computation ratio increased from 0.08 to 0.29.
- The virtualization layer reduced the computational performance of the developed parallel DEM SaaS by 2.4% and 2.0% in the case of Docker containers and KVM-based VMs without OpenStack services, respectively.
- The overall overhead of the cloud infrastructure increased significantly when the number of parallel processes increased. The software execution time increased by up to 13.7% and 11.2% of the execution time on the native hardware in the case of Docker containers and KVM-based VMs with the OpenStack cloud, respectively.
- The large overhead was mainly caused by OpenStack processes that increased the load imbalance of the parallel DEM SaaS based on MPI communication. The processes of the OpenStack service Zun for Docker containers consumed more CPU time and produced a larger load imbalance than those of the OpenStack service Nova for KVM-based VMs, which resulted in a larger overall overhead of the cloud infrastructure. On average, the difference in overhead was about 2.5% of the execution time on the native hardware.
- The study revealed that standard benchmarks can hardly provide the comprehensive information required for efficient scheduling of parallel DEM computations. Preliminary specific benchmarks are required to evaluate the parallel performance of the developed SaaS and the overhead of the cloud infrastructure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sakellari, G.; Loukas, G. A Survey of Mathematical Models, Simulation Approaches and Testbeds Used for Research in Cloud Computing. Simul. Model. Pract. Theory 2013, 39, 92–103. [Google Scholar] [CrossRef]
- OpenStack. Available online: https://www.openstack.org/ (accessed on 9 May 2021).
- Nurmi, D.; Wolski, R.; Grzegorczyk, C.; Obertelli, G.; Soman, S.; Youseff, L.; Zagorodnov, D. The Eucalyptus Open-Source Cloud-Computing System. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, Shanghai, China, 18–21 May 2009; pp. 124–131. [Google Scholar]
- Chierici, A.; Veraldi, R. A Quantitative Comparison between Xen and Kvm. J. Phys. Conf. Ser. 2010, 219, 042005. [Google Scholar] [CrossRef]
- Libvirt. Available online: https://libvirt.org/ (accessed on 9 May 2021).
- LXC. Available online: https://linuxcontainers.org/ (accessed on 9 May 2021).
- Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific Containers for Mobility of Compute. PLoS ONE 2017, 12, e0177459. [Google Scholar] [CrossRef]
- Docker. Available online: https://www.docker.com/ (accessed on 9 May 2021).
- Li, G.; Woo, J.; Lim, S.B. HPC Cloud Architecture to Reduce HPC Workflow Complexity in Containerized Environments. Appl. Sci. 2021, 11, 923. [Google Scholar] [CrossRef]
- McMillan, B.; Chen, C. High Performance Docking; Technical White Paper; IBM: Armonk, NY, USA, 2014. [Google Scholar]
- UberCloud. ANSYS Fluids and Structures on Cloud. Available online: https://www.theubercloud.com/ansys-cloud (accessed on 9 May 2021).
- EDEM Now Available on Rescale’s Cloud Simulation Platform. Available online: https://www.edemsimulation.com/blog-and-news/news/edem-now-available-rescales-cloud-simulation-platform/ (accessed on 9 May 2021).
- Astyrakakis, N.; Nikoloudakis, Y.; Kefaloukos, I.; Skianis, C.; Pallis, E.; Markakis, E.K. Cloud-Native Application Validation Amp; Stress Testing through a Framework for Auto-Cluster Deployment. In Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, 11–13 September 2019; pp. 1–5. [Google Scholar]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete Particle Simulation of Particulate Systems: A Review of Major Applications and Findings. Chem. Eng. Sci. 2008, 63, 5728–5770. [Google Scholar] [CrossRef]
- Khan, A.A.; Zakarya, M. Energy, Performance and Cost Efficient Cloud Datacentres: A Survey. Comput. Sci. Rev. 2021, 40, 100390. [Google Scholar] [CrossRef]
- Markauskas, D.; Kačeniauskas, A. The Comparison of Two Domain Repartitioning Methods Used for Parallel Discrete Element Computations of the Hopper Discharge. Adv. Eng. Softw. 2015, 84, 68–76. [Google Scholar] [CrossRef]
- Walters, J.P.; Chaudhary, V.; Cha, M.; Guercio, S.; Gallo, S. A Comparison of Virtualization Technologies for HPC. In Proceedings of the 22nd International Conference on Advanced Information Networking and Applications, Gino-wan, Japan, 25–28 March 2008; pp. 861–868. [Google Scholar]
- Macdonell, C.; Lu, P. Pragmatics of Virtual Machines for High-Performance Computing: A Quantitative Study of Basic Overheads. In Proceedings of the 2007 High Performance Computing and Simulation Conference, Prague, Czech, 4–6 June 2007; pp. 1–7. [Google Scholar]
- Kačeniauskas, A.; Pacevič, R.; Staškūnienė, M.; Šešok, D.; Rusakevičius, D.; Aidietis, A.; Davidavičius, G. Private Cloud Infrastructure for Applications of Mechanical and Medical Engineering. Inf. Technol. Control 2015, 44, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Kozhirbayev, Z.; Sinnott, R.O. A Performance Comparison of Container-Based Technologies for the Cloud. Future Gener. Comput. Syst. 2017, 68, 175–182. [Google Scholar] [CrossRef]
- Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An Updated Performance Comparison of Virtual Machines and Linux Containers. In Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, 29–31 March 2015; pp. 171–172. [Google Scholar]
- Estrada, Z.J.; Deng, F.; Stephens, Z.; Pham, C.; Kalbarczyk, Z.; Iyer, R. Performance Comparison and Tuning of Virtual Machines for Sequence Alignment Software. Scalable Comput. Pract. Exp. 2015, 16, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Chae, M.; Lee, H.; Lee, K. A Performance Comparison of Linux Containers and Virtual Machines Using Docker and KVM. Clust. Comput. 2019, 22, 1765–1775. [Google Scholar] [CrossRef]
- Kačeniauskas, A.; Pacevič, R.; Starikovičius, V.; Maknickas, A.; Staškūnienė, M.; Davidavičius, G. Development of Cloud Services for Patient-Specific Simulations of Blood Flows through Aortic Valves. Adv. Eng. Softw. 2017, 103, 57–64. [Google Scholar] [CrossRef]
- Kominos, C.G.; Seyvet, N.; Vandikas, K. Bare-Metal, Virtual Machines and Containers in OpenStack. In Proceedings of the 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017; pp. 36–43. [Google Scholar]
- Potdar, A.M.; Narayan, D.G.; Kengond, S.; Mulla, M.M. Performance Evaluation of Docker Container and Virtual Machine. Procedia Comput. Sci. 2020, 171, 1419–1428. [Google Scholar] [CrossRef]
- Ventre, P.L.; Pisa, C.; Salsano, S.; Siracusano, G.; Schmidt, F.; Lungaroni, P.; Blefari-Melazzi, N. Performance Evaluation and Tuning of Virtual Infrastructure Managers for (Micro) Virtual Network Functions. In Proceedings of the 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Palo Alto, CA, USA, 7–10 November 2016; pp. 141–147. [Google Scholar]
- Shah, S.A.R.; Waqas, A.; Kim, M.-H.; Kim, T.-H.; Yoon, H.; Noh, S.-Y. Benchmarking and Performance Evaluations on Various Configurations of Virtual Machine and Containers for Cloud-Based Scientific Workloads. Appl. Sci. 2021, 11, 993. [Google Scholar] [CrossRef]
- Han, J.; Ahn, J.; Kim, C.; Kwon, Y.; Choi, Y.; Huh, J. The Effect of Multi-Core on HPC Applications in Virtualized Systems. In European Conference on Parallel Processing, Proceedings of the Euro-Par 2010 Parallel Processing Workshops, Ischia, Italy, 31 August 2010; Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 615–623. [Google Scholar]
- Jackson, K.R.; Ramakrishnan, L.; Muriki, K.; Canon, S.; Cholia, S.; Shalf, J.; Wasserman, H.J.; Wright, N.J. Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud. In Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA, 30 November 2010; pp. 159–168. [Google Scholar]
- Xavier, M.G.; Neves, M.V.; Rossi, F.D.; Ferreto, T.C.; Lange, T.; De Rose, C.A.F. Performance Evaluation of Container-Based Virtualization for High Performance Computing Environments. In Proceedings of the 2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Belfast, UK, 27 February 2013; pp. 233–240. [Google Scholar]
- Hale, J.S.; Li, L.; Richardson, C.N.; Wells, G.N. Containers for Portable, Productive, and Performant Scientific Computing. Comput. Sci. Eng. 2017, 19, 40–50. [Google Scholar] [CrossRef]
- Mohammadi, M.; Bazhirov, T. Comparative Benchmarking of Cloud Computing Vendors with High Performance Linpack. In Proceedings of the 2nd International Conference on High Performance Compilation, Computing and Communications, New York, NY, USA, 15 March 2018; pp. 1–5. [Google Scholar]
- Lv, L.; Zhang, Y.; Li, Y.; Xu, K.; Wang, D.; Wang, W.; Li, M.; Cao, X.; Liang, Q. Communication-Aware Container Placement and Reassignment in Large-Scale Internet Data Centers. IEEE J. Sel. Areas Commun. 2019, 37, 540–555. [Google Scholar] [CrossRef]
- Manumachu, R.R.; Lastovetsky, A. Bi-Objective Optimization of Data-Parallel Applications on Homogeneous Multicore Clusters for Performance and Energy. IEEE Trans. Comput. 2018, 67, 160–177. [Google Scholar] [CrossRef]
- Bystrov, O.; Kačeniauskas, A.; Pacevič, R.; Starikovičius, V.; Maknickas, A.; Stupak, E.; Igumenov, A. Performance Evaluation of Parallel Haemodynamic Computations on Heterogeneous Clouds. Comput. Inform. Spec. Issue Provid. Comput. Solut. Exascale Chall. 2020, 39, 695–723. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Moscardini, M.; Kamlah, M.; Liu, S. A DEM-Based Heat Transfer Model for the Evaluation of Effective Thermal Conductivity of Packed Beds Filled with Stagnant Fluid: Thermal Contact Theory and Numerical Simulation. Int. J. Heat Mass Transf. 2019, 132, 331–346. [Google Scholar] [CrossRef]
- Kačianauskas, R.; Rimša, V.; Kačeniauskas, A.; Maknickas, A.; Vainorius, D.; Pacevič, R. Comparative DEM-CFD Study of Binary Interaction and Acoustic Agglomeration of Aerosol Microparticles at Low Frequencies. Chem. Eng. Res. Des. 2018, 136, 548–563. [Google Scholar] [CrossRef]
- Lu, C.; Ma, L.; Li, Z.; Huang, F.; Huang, C.; Yuan, H.; Tang, Z.; Guo, J. A Novel Hydraulic Fracturing Method Based on the Coupled CFD-DEM Numerical Simulation Study. Appl. Sci. 2020, 10, 3027. [Google Scholar] [CrossRef]
- Stupak, E.; Kačianauskas, R.; Kačeniauskas, A.; Starikovičius, V.; Maknickas, A.; Pacevič, R.; Staškūnienė, M.; Davidavičius, G.; Aidietis, A. The Geometric Model-Based Patient-Specific Simulations of Turbulent Aortic Valve Flows. Arch. Mech. 2017, 69, 317–345. [Google Scholar] [CrossRef]
- Liu, G.; Marshall, J.S.; Li, S.Q.; Yao, Q. Discrete-element method for particle capture by a body in an electrostatic field. Int. J. Numer. Methods Eng. 2010, 84, 1589–1612. [Google Scholar] [CrossRef]
- Govender, N.; Cleary, P.W.; Kiani-Oshtorjani, M.; Wilke, D.N.; Wu, C.-Y.; Kureck, H. The Effect of Particle Shape on the Packed Bed Effective Thermal Conductivity Based on DEM with Polyhedral Particles on the GPU. Chem. Eng. Sci. 2020, 219, 115584. [Google Scholar] [CrossRef]
- Kačeniauskas, A.; Kačianauskas, R.; Maknickas, A.; Markauskas, D. Computation and Visualization of Discrete Particle Systems on GLite-Based Grid. Adv. Eng. Softw. 2011, 42, 237–246. [Google Scholar] [CrossRef]
- Berger, R.; Kloss, C.; Kohlmeyer, A.; Pirker, S. Hybrid Parallelization of the LIGGGHTS Open-Source DEM Code. Powder Technol. 2015, 278, 234–247. [Google Scholar] [CrossRef]
- Norouzi, H.R.; Zarghami, R.; Sotudeh-Gharebagh, R.; Mostoufi, N. Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows; Wiley: Chichester, UK, 2016; ISBN 978-1-119-00513-1. [Google Scholar]
- Kačeniauskas, A.; Rutschmann, P. Parallel FEM Software for CFD Problems. Informatica 2004, 15, 363–378. [Google Scholar] [CrossRef]
- Devine, K.; Boman, E.; Heaphy, R.; Hendrickson, B.; Vaughan, C. Zoltan Data Management Services for Parallel Dynamic Applications. Comput. Sci. Eng. 2002, 4, 90–96. [Google Scholar] [CrossRef]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing. Available online: https://csrc.nist.gov/publications/detail/sp/800-145/final# (accessed on 11 August 2021).
- Schroeder, W.; Martin, K.; Lorensen, B. Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th ed.; Kitware: Clifton Park, NY, USA, 2006; ISBN 978-1-930934-19-1. [Google Scholar]
- Pacevič, R.; Kačeniauskas, A. The Development of VisLT Visualization Service in Openstack Cloud Infrastructure. Adv. Eng. Softw. 2017, 103, 46–56. [Google Scholar] [CrossRef]
- Iperf. Available online: http://sourceforge.net/projects/iperf/ (accessed on 9 May 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bystrov, O.; Pacevič, R.; Kačeniauskas, A. Performance of Communication- and Computation-Intensive SaaS on the OpenStack Cloud. Appl. Sci. 2021, 11, 7379. https://doi.org/10.3390/app11167379
Bystrov O, Pacevič R, Kačeniauskas A. Performance of Communication- and Computation-Intensive SaaS on the OpenStack Cloud. Applied Sciences. 2021; 11(16):7379. https://doi.org/10.3390/app11167379
Chicago/Turabian StyleBystrov, Oleg, Ruslan Pacevič, and Arnas Kačeniauskas. 2021. "Performance of Communication- and Computation-Intensive SaaS on the OpenStack Cloud" Applied Sciences 11, no. 16: 7379. https://doi.org/10.3390/app11167379
APA StyleBystrov, O., Pacevič, R., & Kačeniauskas, A. (2021). Performance of Communication- and Computation-Intensive SaaS on the OpenStack Cloud. Applied Sciences, 11(16), 7379. https://doi.org/10.3390/app11167379