The Indirect Role of Gluteus Medius Muscle in Knee Joint Stability during Unilateral Vertical Jump and Landing on Unstable Surface in Young Trained Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. MVC Testing
2.4. Unilateral CMJ Testing
2.5. Unilateral Landing on Unstable Surface
2.6. Surface Electromyography
2.7. Statistical Analyses
3. Results
3.1. Performance Measurements
3.2. Muscle Activity
4. Discussion
5. Limitations
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinsurin, K.; Vachalathiti, R.; Srisangboriboon, S.; Richards, J. Knee Joint Coordination during Single-Leg Landing in Different Directions. Sports Biomech. 2020, 19, 652–664. [Google Scholar] [CrossRef]
- Kunugi, S.; Koumura, T.; Myotsuzono, R.; Masunari, A.; Yoshida, N.; Miyakawa, S.; Mukai, N. Directions of Single-Leg Landing Affect Multi-Segment Foot Kinematics and Dynamic Postural Stability in Male Collegiate Soccer Athletes. Gait Posture 2020, 80, 285–291. [Google Scholar] [CrossRef]
- Jensen, R.L.; Ebben, W.P. Quantifying Plyometric Intensity via Rate of Force Development, Knee Joint, and Ground Reaction Forces. J. Strength Cond. Res. 2007, 21, 763–767. [Google Scholar] [CrossRef]
- Tai, W.-H.; Wang, L.-I.; Peng, H.-T. Biomechanical Comparisons of One-Legged and Two-Legged Running Vertical Jumps. J. Hum. Kinet. 2018, 64, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Cleather, D.J.; Czasche, M.B. Knee Forces During Landing in Men and Women. J. Hum. Kinet. 2019, 68, 177–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, E.; Hagins, M.; Sheikhzadeh, A.; Nordin, M.; Rose, D. Biomechanical Differences between Unilateral and Bilateral Landings from a Jump: Gender Differences. Clin. J. Sport Med. 2007, 17, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Shultz, R.; Silder, A.; Malone, M.; Braun, H.J.; Dragoo, J.L. Unstable Surface Improves Quadriceps:Hamstring Co-Contraction for Anterior Cruciate Ligament Injury Prevention Strategies. Sports Health 2015, 7, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieske, O.; Muehlbauer, T.; Mueller, S.; Krueger, T.; Kibele, A.; Behm, D.G.; Granacher, U. Effects of Surface Instability on Neuromuscular Performance during Drop Jumps and Landings. Eur. J. Appl. Physiol. 2013, 113, 2943–2951. [Google Scholar] [CrossRef]
- Moisan, G.; Mainville, C.; Descarreaux, M.; Cantin, V. Unilateral Jump Landing Neuromechanics of Individuals with Chronic Ankle Instability. J. Sci. Med. Sport 2020, 23, 430–436. [Google Scholar] [CrossRef]
- O’Connor, J. Can Muscle Co-Contraction Protect Knee Ligaments after Injury or Repair? J. Bone Jt. Surg. Br. Vol. 1993, 75, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.Y.; Mok, K.-M.; Chan, H.C.K.; Yung, P.S.H.; Chan, K.-M. Eccentric Hamstring Strength Deficit and Poor Hamstring-to-Quadriceps Ratio Are Risk Factors for Hamstring Strain Injury in Football: A Prospective Study of 146 Professional Players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Räisänen, A.M.; Pasanen, K.; Krosshaug, T.; Vasankari, T.; Kannus, P.; Heinonen, A.; Kujala, U.M.; Avela, J.; Perttunen, J.; Parkkari, J. Association between Frontal Plane Knee Control and Lower Extremity Injuries: A Prospective Study on Young Team Sport Athletes. BMJ Open. Sport Exerc. Med. 2018, 4, e000311. [Google Scholar] [CrossRef] [PubMed]
- Hietamo, J.; Parkkari, J.; Leppänen, M.; Steffen, K.; Kannus, P.; Vasankari, T.; Heinonen, A.; Mattila, V.M.; Pasanen, K. Association between Lower Extremity Muscular Strength and Acute Knee Injuries in Young Team-Sport Athletes. Transl. Sports Med. 2020, 3, 626–637. [Google Scholar] [CrossRef]
- Thompson, J. The Influence of Eccentric Hip Abductor Strength on Knee Valgus during a Single Leg Drop Landing in University Netball Players. Diploma Thesis, University of Chichester, Chichester, UK, 2020; p. 52. [Google Scholar]
- Hollman, J.H.; Ginos, B.E.; Kozuchowski, J.; Vaughn, A.S.; Krause, D.A.; Youdas, J.W. Relationships between Knee Valgus, Hip-Muscle Strength, and Hip-Muscle Recruitment during a Single-Limb Step-Down. J. Sport Rehabil. 2009, 18, 104–117. [Google Scholar] [CrossRef]
- Atabek, H.Ç.; Sönmez, G.A.; Yilmaz, İ. The Relationship between Isokinetic Strength of Knee Extensors/Flexors, Jumping and Anaerobic Performance. Isokinet. Exerc. Sci. 2009, 17, 79–83. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Jiménez-Reyes, P.; Haff, G.G.; García-Ramos, A. Assessment of the Loaded Squat Jump and Countermovement Jump Exercises with a Linear Velocity Transducer: Which Velocity Variable Provides the Highest Reliability? Sports Biomech. 2021, 20, 247–260. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Sánchez-López, S.; Rodríguez-Pérez, M.A.; García-Ramos, A.; Jiménez-Reyes, P. Effects of Two Drop-Jump Protocols with Different Volumes on Vertical Jump Performance and Its Association with the Force–Velocity Profile. Eur. J. Appl. Physiol. 2020, 120, 317–324. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Sánchez-Medina, L.; Ribas-Serna, J.; González-Badillo, J.J. Effect of Velocity Loss during Squat Training on Neuromuscular Performance. Scand. J. Med. Sci. Sports 2021, 31, 1621–1635. [Google Scholar] [CrossRef]
- Gafner, S.C.; Hoevel, V.; Punt, I.M.; Schmid, S.; Armand, S.; Allet, L. Hip-Abductor Fatigue Influences Sagittal Plane Ankle Kinematics and Shank Muscle Activity during a Single-Leg Forward Jump. J. Electromyogr. Kinesiol. 2018, 43, 75–81. [Google Scholar] [CrossRef]
- Porrati-Paladino, G.; Cuesta-Barriuso, R. Effectiveness of Plyometric and Eccentric Exercise for Jumping and Stability in Female Soccer Players—A Single-Blind, Randomized Controlled Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 294. [Google Scholar] [CrossRef]
- Ueno, R.; Navacchia, A.; DiCesare, C.A.; Ford, K.R.; Myer, G.D.; Ishida, T.; Tohyama, H.; Hewett, T.E. Knee Abduction Moment Is Predicted by Lower Gluteus Medius Force and Larger Vertical and Lateral Ground Reaction Forces during Drop Vertical Jump in Female Athletes. J. Biomech. 2020, 103, 109669. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Komatsu, W.; Cunha, R.; Arliani, G.; Ejnisman, B.; de Castro Pochini, A.; Nakamura, F.Y.; et al. Functional Screening Tests: Interrelationships and Ability to Predict Vertical Jump Performance. Int. J. Sports Med. 2018, 39, 189–197. [Google Scholar] [CrossRef]
- de Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-Week in-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Kagaya, Y.; Fujii, Y.; Nishizono, H. Association between Hip Abductor Function, Rear-Foot Dynamic Alignment, and Dynamic Knee Valgus during Single-Leg Squats and Drop Landings. J. Sport Health Sci. 2015, 4, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Salavati, M.; Moghadam, M.; Ebrahimi, I.; Arab, A.M. Changes in Postural Stability with Fatigue of Lower Extremity Frontal and Sagittal Plane Movers. Gait Posture 2007, 26, 214–218. [Google Scholar] [CrossRef]
- Lee, S.-P.; Powers, C.M. Individuals with Diminished Hip Abductor Muscle Strength Exhibit Altered Ankle Biomechanics and Neuromuscular Activation during Unipedal Balance Tasks. Gait Posture 2014, 39, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Begalle, R.L.; Distefano, L.J.; Blackburn, T.; Padua, D.A. Quadriceps and Hamstrings Coactivation during Common Therapeutic Exercises. J. Athl. Train. 2012, 47, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.T.; Norcross, M.F.; Cannon, L.N.; Zinder, S.M. Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading. J. Athl. Train. 2013, 48, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Dewig, D.R.; Goodwin, J.S.; Pietrosimone, B.G.; Blackburn, J.T. Associations Among Eccentric Hamstrings Strength, Hamstrings Stiffness, and Jump-Landing Biomechanics. J. Athl. Train. 2020, 55, 717–723. [Google Scholar] [CrossRef]
- Davis, D.S.; Briscoe, D.A.; Markowski, C.T.; Saville, S.E.; Taylor, C.J. Physical Characteristics That Predict Vertical Jump Performance in Recreational Male Athletes. Phys. Ther. Sport 2003, 4, 167–174. [Google Scholar] [CrossRef]
- van Dyk, N.; Behan, F.P.; Whiteley, R. Including the Nordic Hamstring Exercise in Injury Prevention Programmes Halves the Rate of Hamstring Injuries: A Systematic Review and Meta-Analysis of 8459 Athletes. Br. J. Sports Med. 2019, 53, 1362–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
EMG at CMJ | EMG at Landing | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | Mext | Mflex | Fabd | Mf/Me | GM | VL | VM | BF | GM | VL | VM | BF | ||
Mext | 0.51 ** | |||||||||||||
Mflex | 0.48 * | 0.59 ** | ||||||||||||
Fabd | 0.63 ** | 0.23 | 0.33 | |||||||||||
Mf/Me | 0.08 | 0.27 | 0.61 ** | 0.18 | ||||||||||
EMG at CMJ | GM | 0.12 | 0.24 | 0.11 | 0.17 | −0.40 | ||||||||
VL | 0.24 | −0.03 | 0.03 | −0.02 | 0.03 | −0.31 | ||||||||
VM | −0.24 | −0.35 | 0.06 | −0.15 | 0.43 * | 0.29 | 0.12 | |||||||
BF | −0.01 | 0.20 | 0.23 | 0.04 | 0.11 | 0.25 | −0.08 | −0.06 | ||||||
EMG at landing | GM | 0.11 | 0.07 | −0.10 | 0.08 | −0.16 | 0.44 * | −0.06 | −0.13 | 0.19 | ||||
VL | 0.19 | −0.20 | −0.17 | −0.10 | −0.03 | −0.05 | 0.56 ** | 0.19 | −0.19 | 0.13 | ||||
VM | −0.19 | −0.53 ** | −0.14 | −0.24 | 0.33 | −0.20 | 0.36 | 0.48 * | −0.23 | 0.07 | 0.51 * | |||
BF | −0.62 ** | −0.23 | −0.39 | −0.75 ** | −0.27 | −0.15 | −0.12 | 0.03 | 0.19 | −0.10 | 0.01 | 0.22 | ||
BF/VM | −0.12 | 0.42 * | 0.07 | 0.06 | −0.49 * | 0.16 | −0.53 ** | −0.48 * | 0.20 | −0.08 | −0.50 * | −0.77 ** | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebesi, B.; Fésüs, Á.; Varga, M.; Atlasz, T.; Vadász, K.; Mayer, P.; Vass, L.; Meszler, B.; Balázs, B.; Váczi, M. The Indirect Role of Gluteus Medius Muscle in Knee Joint Stability during Unilateral Vertical Jump and Landing on Unstable Surface in Young Trained Males. Appl. Sci. 2021, 11, 7421. https://doi.org/10.3390/app11167421
Sebesi B, Fésüs Á, Varga M, Atlasz T, Vadász K, Mayer P, Vass L, Meszler B, Balázs B, Váczi M. The Indirect Role of Gluteus Medius Muscle in Knee Joint Stability during Unilateral Vertical Jump and Landing on Unstable Surface in Young Trained Males. Applied Sciences. 2021; 11(16):7421. https://doi.org/10.3390/app11167421
Chicago/Turabian StyleSebesi, Balázs, Ádám Fésüs, Mátyás Varga, Tamás Atlasz, Kitty Vadász, Petra Mayer, Lívia Vass, Balázs Meszler, Bence Balázs, and Márk Váczi. 2021. "The Indirect Role of Gluteus Medius Muscle in Knee Joint Stability during Unilateral Vertical Jump and Landing on Unstable Surface in Young Trained Males" Applied Sciences 11, no. 16: 7421. https://doi.org/10.3390/app11167421
APA StyleSebesi, B., Fésüs, Á., Varga, M., Atlasz, T., Vadász, K., Mayer, P., Vass, L., Meszler, B., Balázs, B., & Váczi, M. (2021). The Indirect Role of Gluteus Medius Muscle in Knee Joint Stability during Unilateral Vertical Jump and Landing on Unstable Surface in Young Trained Males. Applied Sciences, 11(16), 7421. https://doi.org/10.3390/app11167421