Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Burning and Fire Severity at Tree Level
2.4. Litterfall: Fire Severity at Stand Level
2.5. Tree-Ring Width Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moritz, M.A.; Stephens, S.L. Fire and sustainability: Considerations for California’s altered future climate. Clim. Chang. 2008, 87, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Piqué, M.; Domènech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2018, 618, 1539–1546. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernandez, C.; Moreira, F.; Rigolot, E.; Stoof, C.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.J.D.; Alegre, S.P.; Coelho, C.O.A.; Shakesby, R.A.; Pascoa, F.M.; Ferreira, C.S.S.; Keizer, J.J.; Ritsema, C. Strategies to prevent forest fires and techniques to reverse degradation process in burned areas. Catena 2015, 128, 224–237. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Bento, C.P.M.; Ferreira, C.S.S.; Ferreira, A.J.D.; Stoof, C.R.; Urbanek, E.; Walsh, R.P.D. Impacts of soil loss on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 2015, 128, 278–293. [Google Scholar] [CrossRef]
- Fernandes, P.; Rossa, C.; Madrigal, J.; Rigolot, E. Updated state of the art on the uses of prescribed burning. In Project FORESTERRA MedWildFireLab: “Global Change Impacts on Wildland Fire Behaviour and Uses in Mediterranean Forest Ecosystems, towards a «Wall Less» Mediterranean Wildland Fire Laboratory”; UTAD, INIA, INRA: Paris, France, 2016; p. 20. [Google Scholar]
- Kerns, B.K.; Day, M.A. Prescribed fire regimes subtly alter ponderosa pine forest plant community structure. Ecosphere 2018, 9, e02529. [Google Scholar] [CrossRef] [Green Version]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [Green Version]
- Nesmith, J.C.; Das, A.J.; O’Hara, K.L.; van Mantgem, P.J. The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. Can. J. For. Res. 2015, 45, 910–919. [Google Scholar] [CrossRef]
- Maringer, J.; Ascoli, D.; Küffer, N.; Schmidtlein, S.; Conedera, M. What drives European beech (Fagus sylvatica L.) mortality after forest fires of varying severity? For. Ecol. Manag. 2016, 368, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.T.; Koyama, A.; Kavanagh, K.L. Wildfire effects on physiological properties in conifers of central Idaho forests, USA. Trees 2017, 31, 545–555. [Google Scholar] [CrossRef]
- Battipaglia, G.; Strumia, S.; Esposito, A.; Giuditta, E.; Sirignano, C.; Altieri, S.; Rutigliano, F.A. The effects of prescribed burning on Pinus halepensis Mill. as revealed by dendrochronological and isotopic analyses. For. Ecol. Manag. 2014, 334, 201–208. [Google Scholar] [CrossRef]
- Valor, T.; González-Olabarria, J.R.; Piqué, M. Assessing the impact of prescribed burning on the growth of European pines. For. Ecol. Manag. 2015, 343, 101–109. [Google Scholar] [CrossRef]
- Valor, T. The Effects of Prescribed Burning on the Vigour of Mediterranean pine species. Ph.D. Thesis, Universidad Autónoma de Barcelona, Barcelona, Spain, 2018; 199p. [Google Scholar]
- Hough, W.A. Carbohydrate reserves of saw-palmetto: Seasonal variation and effects of burning. For. Sci. 1968, 14, 399–405. [Google Scholar]
- Garrison, G.A. Carbohydrate Reserves and Response to Use; General Technical Report GTR-INT-1; USDA Forest Service: New York, NY, USA, 1972. [Google Scholar]
- Skinner, C.N.; Chang, C.R. Fire Regimes, Past and Present; Technical Report; Centers for Water and Wildland Resources, University of California Davis: Davis, CA, USA, 1996. [Google Scholar]
- Thies, W.G.; Westlind, D.J.; Loewen, M. Season of prescribed burn in ponderosa pine forests in eastern Oregon: Impact on pine mortality. Int. J. Wildland Fire 2005, 14, 223–231. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate London; Academic Press: London, UK, 1976. [Google Scholar]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carrer, M. Age-dependent xylogenesis in timberline conifers. New Phytol. 2008, 177, 199–208. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Vacchiano, G. Interactions between climate, growth and seed production in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forests in Cuenca Mountains (Spain). New For. 2018, 49, 399–414. [Google Scholar] [CrossRef] [Green Version]
- DeClerck, F.A.J.; Barbour, M.G.; Sawyer, J.O. Species richness and stand stability in conifer forests of the Sierra Nevada. Ecology 2006, 87, 2787–2799. [Google Scholar] [CrossRef]
- Lloret, F.; Lobo, A.; Estevan, H.; Maisongrande, P.; Vayreda, J.; Terradas, J. Woody plant richness and NDVI response to drought events in Catalonian (Notheastern Spain) forests. Ecology 2007, 88, 2270–2279. [Google Scholar] [CrossRef]
- Klos, R.J.; Wang, G.G.; Bauerle, W.L.; Rieck, J.R. Drought impact on forest growth and mortality in the southeast USA: An analysis using Forest Health and Monitoring data. Ecol. Appl. 2009, 19, 699–708. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Vega, J.A.; Jimenez, E.; Rigolot, E. Fire resistance of European pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Ribas, M.; Gutiérrez, E.; Vallejo, R.; Kaye, M.W. Forest structure and fire history in an old Pinus nigra forest, eastern Spain. For. Ecol. Manag. 2008, 255, 1234–1242. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin? A review. Int. J. Wildland Fire 2009, 17, 713–723. [Google Scholar] [CrossRef]
- Tapias, R.; Gil, L.; Fuentes-Utrilla, P.; Pardos, J.A. Canopy seed banks in Mediterranean pines of south-eastern Spain: A comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J. Ecol. 2001, 89, 629–638. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Rigolot, E. The fire ecology and management of maritime pine (Pinus pinaster Ait.). For. Ecol. Manag. 2007, 241, 1–13. [Google Scholar] [CrossRef]
- Bauer, G.; Speck, T.; Blömer, J.; Bertling, J.; Speck, O. Insulation capability of the bark of trees with different fire adaptation. J. Mater. Sci. 2010, 45, 5950–5959. [Google Scholar] [CrossRef]
- Madrigal, J.; Souto-García, J.; Calama, R.; Guijarro, M.; Picos, J.; Hernando, C. Resistance of Pinus pinea L. bark to fire. Int. J. Wildland Fire 2019, 28, 342–353. [Google Scholar] [CrossRef]
- Espinosa, J.; Rodríguez de Rivera, O.; Madrigal, J.; Guijarro, M.; Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. For. Ecol. Manag. 2020, 474, 118372. [Google Scholar] [CrossRef]
- Rötzer, T.; Seifert, T.; Gayler, S.; Priesack, E.; Pretzsch, H. Effects of stress and defence allocation on tree growth: Simulation results at the individual and stand level. In Growth and Defence in Plants; Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J.-C., Pretzsch, H., Eds.; Ecological Studies; Springer: Berlin, Germany, 2012; Volume 220, pp. 401–443. [Google Scholar]
- Vanninen, P.; Mäkelä, A. Needle and stem wood production in scots pine (Pinus sylvestris) trees of different age, size and competitive status. Tree Physiol. 2000, 20, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Poljanšek, S.; Levanič, T.; Ballian, D.; Jalkanen, R. Tree growth and needle dynamics of P. nigra and P. sylvestris and their response to climate and fire disturbances. Trees 2015, 29, 683–694. [Google Scholar] [CrossRef]
- Wyant, J.G.; Laven, R.D.; Omi, P.N. Fire effects on shoot growth characteristics of ponderosa pine in Colorado. Can. J. For. Res. 1983, 13, 620–625. [Google Scholar] [CrossRef]
- Chambers, J.L.; Dougherty, P.M.; Hennessey, T.C. Fire: Its effects on growth and physiological processes in conifer forests. In Stress Physiology and Forest Productivity; Springer: Dordrecht, The Netherlands, 1986; pp. 171–189. [Google Scholar]
- Villarrubia, C.R.; Chambers, J.L. Fire: Its effects on growth and survival of loblolly pine, Pinus taeda L. Proc. Acad. Sci. 1978, 41, 85–93. [Google Scholar]
- Botelho, H.S.; Fernandes, P.; Loureiro, C.; Rego, F. Growth response of maritime pine (Pinus pinaster) trees to high-intensity prescribed fires. In Proceedings of the 3rd International Conference on Forest Fire Research & 14th Fire and Forest Meteorology Conference ADAI, Luso, Portugal, 16–20 November 1998; pp. 1863–1873. [Google Scholar]
- Espinosa, J.; Madrigal, J.; Pando, V.; de la Cruz, A.C.; Guijarro, M.; Hernando, C. The effect of low-intensity prescribed burns in two seasons on litterfall biomass and nutrient content. Int. J. Wildland Fire 2020, 29, 1029–1041. [Google Scholar] [CrossRef]
- Madrigal, J.; Fonturbel, T.; de las Heras, J.; Rodríguez y Silva, J.; Ruiz, A.D. Vulnerabilidad Integral de los Sistemas Forestales Frente a Incendios: Implicaciones en las Herramientas de Gestión Forestal “VIS4FIRE”. III Taller de Lecciones Aprendidas; UCO-Laboratorio de Incendios Forestales, Ed.; UCO: Córdoba, Spain, 2018; pp. 212–219. ISBN 978-84-09-05314-8. [Google Scholar]
- Plaza-Álvarez, P.; Lucas-Borja, M.; Sagra, J.; Moya, D.; Fontúrbel, T.; de las Heras, J. Soil respiration changes after prescribed fires in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) monospecific and mixed forest stands. Forests 2017, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.; Rodríguez De Rivera, Ó.; Madrigal, J.; Guijarro, M.; Hernando, C. Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of Pinus nigra and Pinus pinaster stands. Forests 2020, 11, 1006. [Google Scholar] [CrossRef]
- AEMET. Weather Data from Cañizares Station (Cuenca-Spain) 1997–2018; State Meteorological Agency of Spanish Government (AEMET): Madrid, Spain, 2018. [Google Scholar]
- Espinosa, J.; Madrigal, J.; De La Cruz, A.C.; Guijarro, M.; Jimenez, E.; Hernando, C. Short-term effects of prescribed burning on litterfall biomass in mixed stands of Pinus nigra and Pinus pinaster and pure stands of Pinus nigra in the Cuenca Mountains (Central-Eastern Spain). Sci. Total Environ. 2018, 618, 941–951. [Google Scholar] [CrossRef]
- Vega, J.A. Efectos del Fuego Prescrito Sobre el Suelo en Pinares de Pinus pinaster Ait. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2001; 417p. [Google Scholar]
- Graves, S.J.; Rifai, S.W.; Putz, F.E. Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae). Am. J. Bot. 2014, 101, 2183–2188. [Google Scholar] [CrossRef] [Green Version]
- Martinson, E.J.; Omi, P.N. Fuel Treatments and Fire Severity: A Meta-Analysis; Research Paper; RMRS-RP-103WWW; Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2013. [Google Scholar]
- Espinosa, J.; Palheiro, P.; Loureiro, C.; Ascoli, D.; Esposito, A.; Fernandes, P.M. Fire-severity mitigation by prescribed burning assessed from fire-treatment encounters in maritime pine stands. Can. J. For. Res. 2019, 49, 205–211. [Google Scholar] [CrossRef]
- Byram, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Ukonmaanaho, L.; Pitman, R.; Bastrup-Birk, A.; Breda, N.; Rautio, P. Part XIII: Sampling and Analysis of Litterfall. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Coordinating Centre, Ed.; Thünen Institute for Forests Ecosystems: Eberswalde, Germany, 2016; 15p. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Rinn, F. TSAP-Win Professional, Time Series Analysis and Presentation for Dendrochronology and Related Applications; Version 0.3; Rinntech: Heidelberg, Germany, 2003; Quick reference. [Google Scholar]
- Martin-Benito, D.; Anchukaitis, K.; Evans, M.; Beeckman, H.; del Rio, M.; Cañellas, I. Effects of drought on xylem anatomy and water use efficiency of two co-occurring pine species. Forests 2017, 8, 332. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.L. Computer-assisted quality control in treering dating and measurement. Tree Ring Bull 1983, 43, 69–75. [Google Scholar]
- Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 1999, 9, 216–227. [Google Scholar] [CrossRef]
- Varner, J.M.; Putz, F.E.; O’Brien, J.J.; Hiers, J.K.; Mitchell, R.J.; Gordon, D.R. Post-fire tree stress and growth following smoldering duff fires. For. Ecol. Manag. 2009, 258, 2467–2474. [Google Scholar] [CrossRef]
- Sala, A.; Peters, G.; McIntyre, L.; Harrington, M. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season. Tree Physiol. 2005, 25, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottero, A.; D’Amato, A.W.; Palik, B.J.; Kern, C.C.; Bradford, J.B.; Scherer, S.S. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota. For. Sci. 2017, 63, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Seifert, T.; Meincken, M.; Odhiambo, B.O. The effect of surface fire on tree ring growth of Pinus radiata trees. Ann. For. Sci. 2017, 74, 34. [Google Scholar] [CrossRef]
- Sutherland, E.K.; Covington, W.W.; Andariese, S. A model of ponderosa pine growth response to prescribed burning. For. Ecol. Manag. 1991, 44, 161–173. [Google Scholar] [CrossRef]
- Peterson, D.L.; Arbaugh, M.J.; Pollock, G.H.; Robinson, L.J. Postfire growth of Pseudotsuga menziesii and Pinus contorta in the Northern Rocky Mountains, USA. Int. J. Wildland Fire 1991, 1, 63–71. [Google Scholar] [CrossRef]
- Ford, C.R.; Emily, S.M.; Gordon, A.F. Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris). Can. J. For. Res. 2010, 40, 1410–1420. [Google Scholar] [CrossRef]
- Debano, L.F.; Neary, D.G.; Folliot, P.F. Fire Effects on Ecosystems; Wiley: New York, NY, USA, 1998. [Google Scholar]
- DeLuca, T.H.; Zouhar, K.L. Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. For. Ecol. Manag. 2000, 138, 263–271. [Google Scholar] [CrossRef]
- Alfaro-Sánchez, R.; Camarero, J.J.; Sánchez-Salguero, R.; Trouet, V.; Heras, J.D.L. How do Droughts and Wildfires Alter Seasonal Radial Growth in Mediterranean Aleppo Pine Forests? Tree-Ring Res. 2018, 74, 1–14. [Google Scholar] [CrossRef]
- Busse, M.D.; Simon, S.A.; Riegel, G.M. Tree-growth and understory responses to low-severity prescribed burning in thinned Pinus ponderosa forests of central Oregon. For. Sci. 2000, 46, 258–268. [Google Scholar]
- Blanck, Y.L.; Rolstad, J.; Storaunet, K.O. Low-to moderate-severity historical fires promoted high tree growth in a boreal Scots pine forest of Norway. Scand. J. For. Res. 2013, 28, 126–135. [Google Scholar] [CrossRef]
- Felton, A.; Lindbladh, M.; Brunet, J.; Fritz, Ö. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For. Ecol. Manag. 2010, 260, 939–947. [Google Scholar] [CrossRef]
- Loreau, M. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jactel, H.; Nicoll, B.C.; Branco, M.; González-Olabarría, J.R.; Grodzki, W.; Långström, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D.; et al. The Influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009, 66, 701. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob. Ecol. Biogeogr. 2009, 18, 485–497. [Google Scholar] [CrossRef]
- De Luis, M.; Cufar, K.; Di Filippo, A.; Novak, K.; Papadopoulos, A.; Piovesan, G.; Rathgeber, C.B.K.; Raventos, J.; Saz, M.A.; Smith, K.T. Plasticity in dendroclimatic response across the distribution range of Aleppo Pine (Pinus halepensis). PLoS ONE 2013, 8, e83550. [Google Scholar] [CrossRef] [Green Version]
- Martin-Benito, D.; Kint, V.; Del Rio, M.; Muys, B.; Cañellas, I. Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: Past trends and future perspectives. For. Ecol. Manag. 2011, 262, 1030–1040. [Google Scholar] [CrossRef]
- Swezy, D.M.; Agee, J.K. Prescribed fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 1991, 21, 626–634. [Google Scholar] [CrossRef]
- Harrington, M. Predicting Pinus ponderosa mortality from dormant season and growing season fire injury. Int. J. Wildland Fire 1993, 3, 65–72. [Google Scholar] [CrossRef]
- Odhiambo, B.; Meincken, M.; Seifert, T. The protective role of bark against fire damage: A comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees 2014, 28, 555–565. [Google Scholar] [CrossRef]
- Wesolowski, A.; Adams, M.A.; Pfautsch, S. Insulation capacity of three bark types of temperate Eucalyptus species. For. Ecol. Manag. 2014, 313, 224–232. [Google Scholar] [CrossRef]
- Rozas, V.; Gonzalo, P.D.L.; Ignacio, G.G.; Jose, R.A. Contrasting effects of wildfire and climate on radial growth of Pinus canariensis on windward and leeward slopes on Tenerife, Canary Islands. Trees 2001, 25, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Retzlaff, M.; Keane, R.; Affleck, D.; Hood, S. Growth response of whitebark pine (Pinus albicaulis Engelm) regeneration to thinning and prescribed burn treatments. Forests 2018, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- De Micco, V.; Zalloni, E.; Balzano, A.; Battipaglia, G. Fire influence on Pinus halepensis: Wood responses close and far from the scars. IAWA J. 2013, 34, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Gordon, C.; Larson, P.R. Seasonal course of photosynthesis, respiration, and distribution of 14C in young Pinus resinosa trees as related to wood formation. Plant Physiol. 1968, 43, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Waring, R.H.; Schlesinger, W.H. Forest Ecosystems: Concepts and Management; Academic Press: New York, NY, USA, 1985; 390p. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; McGraw-Hill: New York, NY, USA, 1966; 520p. [Google Scholar]
-- | Mixed Stand | Pure Stand |
---|---|---|
Coordinates—Longitude | 40°33′36″ N | 40°33′06″ N |
Coordinates—Latitude | 002°15′56″ W | 002°06′32″ W |
Main species | Pinus nigra (89 ± 11%) Pinus pinaster (11 ± 11%) | Pinus nigra (100%) |
pH of topsoil 1 | 7.3 (clay texture) | 6.9 (loamy-sand texture) |
Elevation | 1016 ± 5 m asl | 1232 ± 7 m asl |
Slope | 3–8% | 3–10% |
Stand density | 627 ± 238 trees ha−1 | 1286 ± 339 trees ha−1 |
Stand basal area | 25.4 ± 9.7 m2 ha−1 | 36.6 ± 10.7 m2 ha−1 |
Dominant tree height | 18.6 ± 0.8 m | 17.0 ± 1.6 m |
Tree height | 12.2 ± 2.0 m | 13.2 ± 2.7 m |
Diameter at breast height (DBH) | 19.8 ± 2.6 cm | 18.8 ± 4.1 cm |
Bark thickness | 1.7 ± 0.3 cm | 1.7 ± 0.4 cm |
S | PT | T | RH | WS | RS | FLI 1 | FH | FL 1 |
---|---|---|---|---|---|---|---|---|
-- | -- | °C | % | m s−1 | m min−1 | kW m−1 | cm | cm |
Mixed stand | Spring burning | 21.5 | 47.7 | 0.8 | 0.65 | 20.0 | 53 | 30 |
(1.2) | (5.3) | (0.6) | (0.21) | (8.8) | (15) | (6) | ||
Mixed stand | Autumn burning | 11.9 | 67.0 | 0.3 | 0.59 | 11.2 | 17 | 23 |
(0.4) | (1.3) | (0.3) | (0.31) | (6.6) | (10) | (6) | ||
Pure stand | Spring burning | 20.4 | 32.7 | 0.8 | 0.76 | 32.6 | 43 | 38 |
(1.5) | (2.3) | (0.1) | (0.24) | (13.3) | (8) | (8) | ||
Pure stand | Autumn burning | 12.0 | 43.5 | 0.1 | 0.72 | 13.8 | 26 | 25 |
(0.9) | (0.8) | (0.1) | (0.22) | (10.7) | (13) | (9) |
-- | Both Stands | Mixed Stand | Pure Stand |
---|---|---|---|
Series intercorrelation | 0.439 | 0.542 | 0.431 |
Average mean sensitivity | 0.337 | 0.374 | 0.308 |
S | PT | H | Hc | DBH | SMx | t60 | t300 | L16 | L17 |
---|---|---|---|---|---|---|---|---|---|
-- | -- | m | % | cm | cm | s | s | kg ha−1 | kg ha−1 |
Mixed stand | No burning | 12.2 | 50.3 | 19.5 | -- | -- | -- | 3171 | 3532 |
(5.0) | (16.2) | (10.3) | (649) | (585) | |||||
Mixed stand | Spring burning | 11.9 | 48.0 | 18.1 | 54 | 31 | 10 | 3257 | -- |
(5.0) | (15.2) | (10.0) | (50) | (82) | (26) | (599) | |||
Mixed stand | Autumn burning | 12.2 | 50.1 | 19.4 | 46 | 16 | 6 | -- | 2732 |
(5.2) | (15.8) | (10.4) | (45) | (59) | (20) | (325) | |||
Pure stand | No burning | 13.1 | 39.4 | 19.6 | -- | -- | -- | 1989 | 2393 |
(4.9) | (14.4) | (10.1) | (519) | (739) | |||||
Pure stand | Spring burning | 13.9 | 37.9 | 19.5 | 167 | 23 | 44 | 3482 | -- |
(4.4) | (15.1) | (9.4) | (201) | (93) | (167) | (129) | |||
Pure stand | Autumn burning | 14.5 | 36.2 | 21.7 | 132 | 16 | 33 | -- | 3629 |
(5.3) | (12.5) | (11.3) | (169) | (81) | (149) | (527) |
Fixed Effects | Model SB | Model AB | Model NB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | SE | t Value | p Value | Estimate | SE | t Value | p Value | Estimate | SE | t Value | p Value | |
Intercept | 1.364 × 101 | 6.925 × 10−2 | 19.696 | <0.001 | 1.297 × 101 | 9.274 × 10−2 | 13.988 | 0.0026 | 1.488 × 101 | 1.397 × 10−1 | 10.653 | 0.0087 |
Hc | 6.541 × 10−2 | 9.378 × 10−3 | 6.974 | <0.001 | 5.233 × 10−2 | 1.221 × 10−2 | 4.285 | <0.001 | 1.855 × 10−2 | 1.068 × 10−2 | 1.738 | 0.0824 |
DBH | 6.448 × 10−1 | 9.864 × 10−3 | 65.367 | <0.001 | 6.619 × 10−1 | 8.516 × 10−3 | 77.728 | <0.001 | 5.093 × 10−1 | 1.037 × 10−2 | 49.138 | <0.001 |
SMx | −3.762 × 10−2 | 8.500 × 10−3 | −4.426 | <0.001 | −2.291 × 10−1 | 3.092 × 10−2 | −7.411 | <0.001 | -- | -- | -- | -- |
t60 | −1.264 × 10−2 | 5.560 × 10−3 | −2.273 | 0.0231 | −1.790 × 10−1 | 1.175 × 10−1 | −1.524 | 0.1277 | -- | -- | -- | -- |
t300 | −2.796 × 10−2 | 6.159 × 10−3 | −4.540 | <0.001 | −1.039 × 10−1 | 7.387 ×x 10−2 | −1.406 | 0.1598 | -- | -- | -- | -- |
Random effects | Model SB | Model AB | Model NB | |||||||||
Variance | SE | Pr (>Chisq) | Variance | SE | Pr (>Chisq) | Variance | SE | Pr (>Chisq) | ||||
S | 0.0000 | 0.0000 | 1.0000 1.0000 1.0000 | 0.0030 | 0.0554 | 0.8590 1.0000 1.0000 | 0.0287 | 0.1696 | 0.2553 1.0000 1.0000 | |||
P | 0.0177 | 0.1330 | 0.0190 | 0.1379 | 0.0013 | 0.0364 | ||||||
L | 0.0105 | 0.1028 | 0.0188 | 0.1373 | 0.0287 | 0.1696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, J.; Martin-Benito, D.; Rodríguez de Rivera, Ó.; Hernando, C.; Guijarro, M.; Madrigal, J. Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity. Appl. Sci. 2021, 11, 7462. https://doi.org/10.3390/app11167462
Espinosa J, Martin-Benito D, Rodríguez de Rivera Ó, Hernando C, Guijarro M, Madrigal J. Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity. Applied Sciences. 2021; 11(16):7462. https://doi.org/10.3390/app11167462
Chicago/Turabian StyleEspinosa, Juncal, Dario Martin-Benito, Óscar Rodríguez de Rivera, Carmen Hernando, Mercedes Guijarro, and Javier Madrigal. 2021. "Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity" Applied Sciences 11, no. 16: 7462. https://doi.org/10.3390/app11167462
APA StyleEspinosa, J., Martin-Benito, D., Rodríguez de Rivera, Ó., Hernando, C., Guijarro, M., & Madrigal, J. (2021). Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity. Applied Sciences, 11(16), 7462. https://doi.org/10.3390/app11167462