Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction Procedure
2.3. Analysis of Antioxidant Activity
2.4. Determination of Antidiabetic Activity
2.5. Determination of Phenolic Acids
2.6. Elemental Composition Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction Procedure
3.2. Antioxidant Activity
3.3. Antidiabetic Activity
3.4. Polyphenolic Compounds—Phenolic Acids
3.5. Elemental Composition Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, P.H. Flora of Turkey and the East Aegean Islands. In Flora of Turkey and the East Aegean Islands; University Press: Edinburgh, UK, 1970; Volume 3. [Google Scholar]
- Bibalani, G.H.; Mosazadeh-Sayadmahaleh, F. Medicinal benefits and usage of medlar (Mespilus germanica) in Gilan Province (Roudsar District), Iran. J. Med. Plants Res. 2012, 6, 1155–1159. [Google Scholar]
- Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present); Publication of the Istanbul University: Istanbul, Turkey, 1999; Volume 312. [Google Scholar]
- Ercisli, S.; Sengul, M.; Yildiz, H.; Sener, D.; Duralija, B.; Voca, S.; Purgar, D.D. Phytochemical and antioxidant characteristics of medlar fruits (Mespilus germanica L.). J. Appl. Bot. Food Qual. 2012, 85, 86. [Google Scholar]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 2012, 56, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Gordon, A.; Jungfer, E.; da Silva, B.A.; Maia, J.G.S.; Marx, F. Phenolic constituents and antioxidant capacity of four underutilized fruits from the Amazon region. J. Agric. Food Chem. 2011, 59, 7688–7699. [Google Scholar] [CrossRef]
- Rabeta, M.; Chan, S.; Neda, G.; Lam, K.; Ong, M. Anticancer effect of underutilized fruits. Int. Food Res. J. 2013, 20, 551. [Google Scholar]
- Loganayaki, N.; Manian, S. In vitro antioxidant properties of indigenous underutilized fruits. Food Sci. Biotechnol. 2010, 19, 725–734. [Google Scholar] [CrossRef]
- Gülçin, İ.; Topal, F.; Sarikaya, S.B.Ö.; Bursal, E.; Bilsel, G.; Gören, A.C. Polyphenol Contents and Antioxidant Properties of Medlar (Mespilus germanica L.). Rec. Nat. Prod. 2011, 5, 158. [Google Scholar]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of phenolic acids. Phytochem. Rev. 2008, 7, 301–311. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Yeh, C.-T.; Yen, G.-C. Effects of phenolic acids on human phenolsulfotransferases in relation to their antioxidant activity. J. Agric. Food Chem. 2003, 51, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-H.; Hung, M.-H.; Chen, J.Y.-F.; Chang, H.-W.; Yu, M.-L.; Wan, L.; Tsai, F.J.; Wang, T.-P.; Fu, T.-F.; Chiu, C.-C. Anti-allergic activity of grapeseed extract (GSE) on RBL-2H3 mast cells. Food Chem. 2012, 132, 968–974. [Google Scholar] [CrossRef]
- Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res. 2010, 30, 650–659. [Google Scholar] [CrossRef]
- Coppo, E.; Marchese, A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 380–390. [Google Scholar] [CrossRef]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Narciso, C.; Bisinotto, R.; Perdomo, M.; Ballou, M.; Dreher, M.; Santos, J. Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immunocompetence of calves. J. Dairy Sci. 2010, 93, 4280–4291. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, A.; Świderski, F.; Kromołowska, R. Polifenole-źródło naturalnych przeciwutleniaczy. Postępy Tech. Przetwórstwa Spożywczego 2011, 108–111. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPL8-0017-0060 (accessed on 16 August 2021).
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Safavi, M.; Foroumadi, A.; Abdollahi, M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin. Drug Discov. 2013, 8, 1339–1363. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.; Salma, U.; Nurunnabi, T.; Uddin, M.; Jahangir, M.; Islam, S.; Kamruzzaman, M. Management of type 2 diabetes mellitus by lifestyle, diet and medicinal plants. Pak. J. Biol. Sci. PJBS 2011, 14, 13–24. [Google Scholar] [CrossRef]
- Sami, W.; Ansari, T.; Butt, N.S.; Ab Hamid, M.R. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65. [Google Scholar]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, M.G.; Joshi, B.B.; Mistry, K.N. In vitro anti-diabetic and anti-inflammatory activity of stem bark of Bauhinia purpurea. Bull. Pharm. Med Sci. 2013, 1, 139–150. [Google Scholar]
- Smorowska, A.J.; Żołnierczyk, A.K.; Nawirska-Olszańska, A.; Sowiński, J.; Szumny, A. Nutritional Properties and In Vitro Antidiabetic Activities of Blue and Yellow Corn Extracts: A Comparative Study. J. Food Qual. 2021, 2021, 8813613. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J. Food Compos. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- European Commission. Food Products-Determination of Trace Elements-Pressure Mineralization; PN-EN 13805:2003; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Bryła, E.; Dobrzyński, M.; Konkol, D.; Kuropka, P.; Styczyńska, M.; Korczyński, M. Toxic Metals Content in Impacted Third Molars and Adjacent Bone Tissue in Different Groups of Patients. Materials 2021, 14, 793. [Google Scholar] [CrossRef] [PubMed]
- Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Agric. Food Chem. 2007, 55, 9559–9570. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Asgarirad, H. The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf. Afr. J. Biotechnol. 2011, 10, 283–289. [Google Scholar]
- Nair, S.S.; Kavrekar, V.; Mishra, A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013, 3, 128–132. [Google Scholar]
- Subramanian, R.; Asmawi, M. Sadikun, A. In vitro alpha-glucosidase and alphaamylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta. Biochim. Pol. 2008, 55, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkarachiyasit, S.; Charoenlertkul, P.; Yibchok-Anun, S.; Adisakwattana, S. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int. J. Mol. Sci. 2010, 11, 3387–3396. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.S.; Kavrekar, V.; Mishra, A. Evaluation of in vitro antidiabetic activity of selected plant extracts. Int. J. Pharm. Sci. Invent. 2013, 2, 12–19. [Google Scholar]
- Elya, B.; Handayani, R.; Sauriasari, R.; Hasyyati, U.S.; Permana, I.T.; Permatasari, Y.I. Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha amylase, alpha glucosidase and dipeptidyl peptidase IV. Pak. J. Biol. Sci. 2015, 18, 279. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Park, M.; Lee, H.C.; Kang, Y.-H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem. 2006, 13, 1203–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2005, 23, 189–195. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 2005, 53, 2760–2766. [Google Scholar] [CrossRef] [PubMed]
- Chiasson, J.-L.; Josse, R.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Acarbose for the prevention of Type 2 diabetes, hypertension and cardiovascular disease in subjects with impaired glucose tolerance: Facts and interpretations concerning the critical analysis of the STOP-NIDDM Trial data. Diabetologia 2004, 47, 969–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habeeb, M.N.; Naik, P.R.; Moqbel, F.S. Inhibition of α-glucosidase and α-amylase by Morus alba Linn leaf extracts. J. Pharm. Res 2012, 5, 285–289. [Google Scholar]
- Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Fenercioglu, A.K.; Saler, T.; Genc, E.; Sabuncu, H.; Altuntas, Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in Type 2 diabetes mellitus without complications. J. Endocrinol. Investig. 2010, 33, 118–124. [Google Scholar] [CrossRef]
- Morton, L.W.; Caccetta, R.A.A.; Puddey, I.B.; Croft, K.D. Chemistry and biological effects of dietary phenolic compounds: Relevance to cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 2000, 27, 152–159. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Sheen, J.-M.; Hu, W.L.; Hung, Y.-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Med. Cell. Longev. 2017, 2017, 8526438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Ling, W.; Ma, J.; Xia, M.; Hou, M.; Wang, Q.; Zhu, H.; Tang, Z. An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E–deficient mice. J. Nutr. 2006, 136, 2220–2225. [Google Scholar] [CrossRef]
- Feldman, F.; Koudoufio, M.; Desjardins, Y.; Spahis, S.; Delvin, E.; Levy, E. Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients 2021, 13, 672. [Google Scholar] [CrossRef]
- Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012, 32, 537–541. [Google Scholar] [CrossRef]
- Phonsatta, N.; Deetae, P.; Luangpituksa, P.; Grajeda-Iglesias, C.; Figueroa-Espinoza, M.C.; Le Comte, J.R.M.; Villeneuve, P.; Decker, E.A.; Visessanguan, W.; Panya, A. Comparison of antioxidant evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in different food matrices. J. Agric. Food Chem. 2017, 65, 7509–7518. [Google Scholar] [CrossRef]
- Kroes, B.v.; Van den Berg, A.; Van Ufford, H.Q.; Van Dijk, H.; Labadie, R. Anti-inflammatory activity of gallic acid. Planta Med. 1992, 58, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Maiuro, L.; Sturchio, M.; Coppola, R.; Tremonte, P. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int. J. Food Microbiol. 2018, 266, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V. Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules 2011, 16, 74–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wołonciej, M.; Milewska, E.; Roszkowska-Jakimiec, W. Trace elements as an activator of antioxidant enzymes. Postepy Hig. I Med. Dosw. 2016, 70, 1483–1498. [Google Scholar] [CrossRef]
No | Sample | Sample Code |
---|---|---|
1 | Extract of medlar fruit before purification at Amberlite XAD-16 | MFE |
2 | The aqueous fraction of the fruit preparation (after purification at Amberlite XAD-16) | MF |
3 | The methanol fraction of the fruit preparation (after purification at Amberlite XAD-16) | WF |
4 | The medlar concentrated extract (after purification at Amberlite XAD-16) | MFEC |
Material | ABTS | FRAP |
---|---|---|
Fruit extract (MFE) | 187.56 ± 15.76 b,c | 82.35 ± 10.23 c |
Methanolic fraction (MF) | 245.31 ± 50.42 a | 137.13 ± 9.87 a |
Water fraction (WF) | 194.28 ± 55.85 b | 101.25 ± 8.14 b |
Material | Percentage of Inhibition | |||
---|---|---|---|---|
Concentration [mg/mL DMSO] | ||||
1 | 5 | 10 | 20 | |
Fruit extract (MFE) | 14.98 ± 0.07 c | 47.22 ± 0.07 b | 61.23 ± 0.19 b | 100 ± 0.00 a |
Methanolic fraction (MF) | 25.79 ± 0.07 b | 27.14 ± 0.10 c | 30.74 ± 0.08 c | 100 ± 0.00 a |
Water fraction (WF) | 34.96 ± 0.08 a | 52.11 ± 0.05 a | 79.29 ± 0.22 a | 100 ± 0.00 a |
No | Rt [min] | Phenolic Acids | Extract (MFE) | Methanolic Fraction (MF) | Water Fraction (WF) |
---|---|---|---|---|---|
1 | 3.08 | Gallic acid | 8.76 ± 1.23 b | 36.80 ± 0.3.11 a | 43.84 ± 3.27 a |
2 | 4.08 | ρ-Aminobenzoic acid | 1.17 ± 0.42 c | 2.90 ± 0.52 b | 4.55 ± 1.22 a |
3 | 4.25 | Protocatechuic acid | 0.61 ± 0.12 b | 11.66 ± 1.02 a | 7.00 ± 0.94 a |
4 | 4.75 | Catechin | 0.88 ± 0.05 b | 0.46 ± 0.07 c | 1.21 ± 0.25 a |
5 | 4.84 | (−)Epicatechin | 7.87 ± 0.98 a | 0.42 ± 0.07 c | 1.74 ± 0.32 b |
6 | 5.27 | Chlorogenic acid | 3.04 ± 1.01 b | 5.28 ± 0.92 a | 5.95 ± 1.02 a |
7 | 5.66 | Neochlorogenic acid | 5.27 ± 1.24 a | 1.82 ± 0.18 b | 1.86 ± 0.54 b |
8 | 6.06 | Procyanidin B2 | 3.52 ± 0.92 a | 3.51 ± 0.09 a | 2.93 ± 0.36 b |
9 | 6.85 | Caffeic acid | 0.36 ± 0.07 b | 0.33 ± 0.11 c | 0.39 ± 0.12 a |
10 | 8.04 | Ferulic acid | 0.98 ± 0.11 c | 0.48 ± 0.07 b | 5.46 ± 0.99 a |
11 | 8.12 | Sinapic acid | 0.09 ± 0.06 b | 0.35 ± 0.06 a | n.d. |
12 | In total: | 32.05 | 64.01 | 74.93 |
No | Element | [mg/kg] | [mg/Day] [61] |
---|---|---|---|
1 | Copper | 2.68 ± 0.41 | 0.9 |
2 | Zinc | 6.05 ± 0.91 | 10–15 |
3 | Sodium | 1186.03 ± 127.43 | 1500 |
4 | Iron | 14.28 ± 0.85 | 6–8 |
5 | Magnesium | 76.3 ± 4.06 | 250–350 |
6 | Potassium | 585.29 ± 37.21 | 4700 |
7 | Calcium | 463.05 ± 21.17 | 1000–1200 |
8 | Manganese | 3.74 ± 0.68 | 1.8–2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żołnierczyk, A.K.; Ciałek, S.; Styczyńska, M.; Oziembłowski, M. Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract. Appl. Sci. 2021, 11, 7528. https://doi.org/10.3390/app11167528
Żołnierczyk AK, Ciałek S, Styczyńska M, Oziembłowski M. Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract. Applied Sciences. 2021; 11(16):7528. https://doi.org/10.3390/app11167528
Chicago/Turabian StyleŻołnierczyk, Anna K., Sylwia Ciałek, Marzena Styczyńska, and Maciej Oziembłowski. 2021. "Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract" Applied Sciences 11, no. 16: 7528. https://doi.org/10.3390/app11167528
APA StyleŻołnierczyk, A. K., Ciałek, S., Styczyńska, M., & Oziembłowski, M. (2021). Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract. Applied Sciences, 11(16), 7528. https://doi.org/10.3390/app11167528