Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images
Abstract
:1. Introduction
2. State-of-the-Art
3. Experimental Method
3.1. Data Preparation
3.1.1. Experimental Setup
3.1.2. Data Gathering and Preprocessing
3.2. AI Model Development
3.2.1. CNN
3.2.2. Training and Testing of CNN
4. Result and Discussion
4.1. Performance Evaluation Measure
Real | |||
Abnormal | Normal | ||
Prediction | Abnormal | TP (True positive) | FP (False positive) |
Normal | FN (False Negative) | TN (True negative) |
4.2. Defect Detection Performance for Metal Transfer Abnormality
4.3. Detection Performance of Weld-Pool/Bead
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cordero, Z.C.; Siddel, D.H.; Peter, W.H.; Elliott, A.M. Strengthening of ferrous binder jet 3D printed components through bronze infiltration. Addit. Manuf. 2017, 15, 87–92. [Google Scholar] [CrossRef]
- Martina, F.; Ding, J.L.; Williams, S.; Caballero, A.; Pardal, G.; Quintino, L. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Addit. Manuf. 2019, 25, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Panchagnula, J.S.; Simhambhatla, S. Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing. Robot. Comput. Integr. Manuf. 2018, 49, 194–203. [Google Scholar] [CrossRef]
- Ahsan, M.R.U.; Fan, X.; Seo, G.-J.; Ji, C.; Noakes, M.; Nycz, A.; Liaw, P.K.; Kim, D.B. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625. J. Mater. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Ahsan, M.R.U.; Tanvir, A.N.M.; Seo, G.-J.; Bates, B.; Hawkins, W.; Lee, C.; Liaw, P.K.; Noakes, M.; Nycz, A.; Kim, D.B. Heat-treatment effects on a bimetallic additively-manufactured structure (BAMS) of the low-carbon steel and austenitic-stainless steel. Addit. Manuf. 2020, 32, 101036. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Xia, C.; Pan, Z.; Polden, J.; Li, H.; Xu, Y.; Chen, S.; Zhang, Y. A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. J. Manuf. Syst. 2020, 57, 31–45. [Google Scholar] [CrossRef]
- Tang, S.; Wang, G.; Zhang, H.; Wang, R. An online surface defects detection system for AWAM based on deep learning. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 7–9 August 2017. [Google Scholar]
- Lopez, A.; Bacelar, R.; Pires, I.; Santos, T.G.; Sousa, J.P.; Quintino, L. Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manuf. 2018, 21, 298–306. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Wong, C.H. Additive manufacturing process monitoring and control by non-destructive testing techniques: Challenges and in-process monitoring. Virtual Phys. Prototyp. 2018, 13, 39–48. [Google Scholar] [CrossRef]
- Lopez, M.; Martinez, J.; Matias, J.M.; Vilan, J.A.; Taboada, J. Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs. Sensors 2010, 10, 5949–5961. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, C.; Martinez, J.; Taboada, J. Automated vision system for quality inspection of slate slabs. Comput. Ind. 2018, 99, 119–129. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Yang, Y.-P.; Zhang, W.; Na, S.-J. Advanced welding manufacturing: A Brief analysis and review of challenges and solutions. J. Manuf. Sci. Eng. 2020, 142. [Google Scholar] [CrossRef]
- Weglowski, M. Modeling and Analysis of the arc light spectrum in GMAW. Weld. J. 2008, 87, 212s–218s. [Google Scholar]
- Jiao, W.; Wang, Q.; Cheng, Y.; Zhang, Y. End-to-End prediction of weld penetration: A deep learning and transfer learning based method. J. Manuf. Process. 2021, 63, 191–197. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Wang, D.; Chen, J.; Feng, Z. DeepWelding: A Deep Learning Enhanced Approach to GTAW Using Multisource Sensing Images. IEEE Trans. Ind. Inform. 2020, 16, 465–474. [Google Scholar] [CrossRef]
- Liao, T.W.; Ni, J. An automated radiographic NDT system for weld inspection: Part I—Weld extraction. NDT E Int. 1996, 29, 157–162. [Google Scholar] [CrossRef]
- Liao, T.W. Classification of welding flaw types with fuzzy expert systems. Expert Syst. Appl. 2003, 25, 101–111. [Google Scholar] [CrossRef]
- Baniukiewicz, P. Automated Defect Recognition and Identification in Digital Radiography. J. Nondestruct. Eval. 2014, 33, 327–334. [Google Scholar] [CrossRef]
- El Ouafi, A.; Bélanger, R.; Méthot, J.-F. An on-line ANN-Based approach for quality estimation in resistance spot welding. Adv. Mater. Res. 2010, 112, 141–148. [Google Scholar] [CrossRef]
- Zapata, J.; Vilar, R.; Ruiz, R. Automatic Inspection system of welding radiographic images based on ANN Under a regularisation process. J. Nondestruct. Eval. 2012, 31, 34–45. [Google Scholar] [CrossRef]
- Yuan, P.; Zhang, C.; Yuan, Y. Research on welding line defect recognition of the in-service pipeline using X-ray detecting. Appl. Mech. Mater. 2012, 195–196, 5–12. [Google Scholar] [CrossRef]
- Mu, W.L.; Gao, J.M.; Jiang, H.Q.; Wang, Z.; Chen, F.M.; Dang, C.Y. Automatic classification approach to weld defects based on PCA and SVM. Insight 2013, 55, 535–539. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, H.W.; Zhang, G.M. A support vector machine approach for classification of welding defects from ultrasonic signals. Nondestruct. Test. Eval. 2014, 29, 243–254. [Google Scholar] [CrossRef]
- Su, L.; Wang, L.Y.; Li, K.; Wu, J.J.; Liao, G.L.; Shi, T.L.; Lin, T.Y. Automated X-ray recognition of solder bump defects based on ensemble-ELM. Sci. China Technol. Sci. 2019, 62, 1512–1519. [Google Scholar] [CrossRef]
- Ye, J.; Ye, H.; Li, Z.; Peng, X.; Zhou, J.; Guo, B. Improving stability of welding model with ME-ELM. In Transactions on Intelligent Welding Manufacturing; Springer: Singapore, 2018; pp. 61–77. [Google Scholar]
- Li, Y.; Han, Q.; Zhang, G.; Horváth, I. A layers-overlapping strategy for robotic wire and arc additive manufacturing of multi-layer multi-bead components with homogeneous layers. Int. J. Adv. Manuf. Technol. 2018, 96, 3331–3344. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Zhang, G.J.; Gao, H.M.; Wu, L. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing. Robot. Comput. Integr. Manuf. 2013, 29, 417–423. [Google Scholar] [CrossRef]
- Chen, X.H.; Li, J.; Cheng, X.; He, B.; Wang, H.M.; Huang, Z. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater. Sci. Eng. A 2017, 703, 567–577. [Google Scholar] [CrossRef]
- Yang, D.Q.; Wang, G.; Zhang, G.J. Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography. J. Mater. Process. Technol. 2017, 244, 215–224. [Google Scholar] [CrossRef]
- Aucott, L.; Dong, H.B.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.W.; Marsden, J.; Feng, S.; Tong, M.M.; et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjdira, B.; Khursheed, T.; Koubaa, A.; Ammar, A.; Ouni, K. Car detection using unmanned aerial vehicles: Comparison between faster R-CNN and YOLOv3. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; pp. 1–6. [Google Scholar]
- Ding, D.H.; Pan, Z.X.; Cuiuri, D.; Li, H.J.; van Duin, S.; Larkin, N. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot. Comput. Integr. Manuf. 2016, 39, 32–42. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G.J.; Hu, J.W.; Wu, L. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J. Intell. Manuf. 2014, 25, 157–163. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Wen, G.R.; Chen, S.B. Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding. J. Manuf. Process. 2019, 45, 208–216. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhang, C.R.; Lu, J.; Bai, L.F.; Zhao, Z.; Han, J. Weld Reinforcement Analysis Based on Long-Term Prediction of Molten Pool Image in Additive Manufacturing. IEEE Access 2020, 8, 69908–69918. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X.; Gao, Z.; Chen, L. Weld Defect Images Classification with VGG16-Based Neural Network. In Digital TV and Wireless Multimedia Communication; Springer: Singapore, 2018; pp. 215–223. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2, Montreal, QC, Canada, 8–13 December 2014; pp. 3320–3328. [Google Scholar]
- Zhang, S.K.; Sun, F.R.; Wang, N.S.; Zhang, C.C.; Yu, Q.L.; Zhang, M.Q.; Babyn, P.; Zhong, H. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. J. Digit. Imaging 2019, 32, 995–1007. [Google Scholar] [CrossRef]
- Ren, R.X.; Hung, T.; Tan, K.C. A generic deep-learning-Based approach for automated surface inspection. IEEE Trans. Cybern. 2018, 48, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.H.; Pang, Z.J.; Wang, Y.W.; Wang, Y.J.; Chen, L. A New image recognition and classification Method combining transfer learning algorithm and MobileNet model for welding defects. IEEE Access 2020, 8, 119951–119960. [Google Scholar] [CrossRef]
- Tanvir, A.N.M.; Ahsan, M.R.; Ji, C.; Hawkins, W.; Kim, D.B. Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)—Part 1: Microstructural characterization. Int. J. Adv. Manuf. Tech. 2019, 103, 3785–3798. [Google Scholar] [CrossRef]
- Ward, G.; Reinhard, E.; Debevec, P. High dynamic range imaging, image-based lighting. In Proceedings of the ACM SIGGRAPH 2008 Classes, Los Angeles, CA, USA, 11–15 August 2008; p. 27. [Google Scholar]
- Canny, J. A Computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G.J.; Zhang, W.H. Forming appearance analysis in multi-layer single-pass GMAW-based additive manufacturing. Int. J. Adv. Manuf. Technol. 2015, 80, 1767–1776. [Google Scholar] [CrossRef]
- Yamba, P.; Xu, Z.Y.; Wang, Y.; Wang, R.; Ye, X. Investigation of humping defect formation in a lap joint at a high-speed hybrid laser-GMA welding. Results Phys. 2019, 13, 102341. [Google Scholar] [CrossRef]
- Wu, C.S.; Hu, Z.H.; Zhong, L.M. Prevention of humping bead associated with high welding speed by double-electrode gas metal arc welding. Int. J. Adv. Manuf. Technol. 2012, 63, 573–581. [Google Scholar] [CrossRef]
- Ye, D.J.; Wu, D.S.; Hua, X.M.; Xu, C.; Wu, Y.X. Using the multi-wire GMAW processes for controlling the formation of humping. Weld. World 2017, 61, 649–658. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Weckman, D.C.; Johnson, D.A.; Kerr, H.W. The humping phenomenon during high speed gas metal arc welding. Sci. Technol. Weld. Join. 2005, 10, 447–459. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Pan, S.J.; Yang, Q.A. A Survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 546, 686. [Google Scholar] [CrossRef]
- Xie, S.M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer learning from deep features for remote sensing and poverty mapping. In Proceedings of the 13th AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Med Assoc. 2016, 316, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Stone, M. Cross-Validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning Library for Theano and Tensorflow. Available online: https://keras.io (accessed on 2 August 2021).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2019, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Jaegerman, J.; Matic, D.; Inayatali, H.; Charoenkitkarn, N.; Chan, J. Detecting Covid-19 in chest X-rays using transfer learning with VGG16. In Proceedings of the 11th International Conference on Computational Systems—Biology and Bioinformatics, Bangkok, Thailand, 19–21 November 2020; pp. 93–96. [Google Scholar]
- Lee, K.-S.K.; Kim, J.Y.; Jeon, E.-T.; Choi, W.S.; Kim, N.H.; Lee, K.Y. Evaluation of scalability and degree of fine-tuning of deep Convolutional neural networks for COVID-19 screening on chest X-ray images using explainable deep-learning algorithm. J. Pers. Med. 2020, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Sharma, R.; Shah, K. Malaria detection from RBC images using shallow convolutional neural networks. arXiv 2020, arXiv:2010.11521. [Google Scholar]
- Hata, E.; Seo, C.; Nakayama, M.; Iwasaki, K.; Ohkawauchi, T.; Ohya, J. Classification of aortic stenosis using ECG by deep learning and its analysis using Grad-CAM. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1548–1551. [Google Scholar]
- Lobo, J.M.; Jimenez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
Data | Model | AUC | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|
Original image | Basic CNN for metal transfer | 0.674 (±0.215) | 0.799 (±0.400) | 0.298 (±0.380) | 0.639 (±0.167) |
VGG16 | 0.495 (±0.010) | 0.200 (±0.400) | 0.400 (±0.495) | 0.392 (±0.145) | |
VGG16-PRETR | 1 * | 0.999 * (±0.001) | 0.965 * (±0.061) | 0.988 * (±0.019) | |
VGG16-PRETR-FINETUNE | 0.800 (±0.245) | 0.798 (±0.399) | 0.800 (±0.400) | 0.799 (±0.270) | |
Preprocessed image | Basic CNN for metal transfer | 0.999 * (±0.001) | 1 * | 0.476 (±0.243) | 0.738 (±0.121) |
VGG16 | 0.939 (±0.044) | 0.999 (±0.001) | 0.464 (±0.164) | 0.731 (±0.082) | |
VGG16-PRETR | 0.990 (±0.005) | 1 * | 0.276 (±0.271) | 0.638 (±0.135) | |
VGG16-PRETR-FINETUNE | 0.999 * (±0.001) | 0.998 (±0.002) | 0.996 * (±0.005) | 0.997 * (±0.002) |
Model | AUC | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
Basic CNN for weld-pool/bead | 0.995 * (±0.002) | 0.933 (±0.033) | 0.985 * (±0.003) | 0.958 (±0.016) |
VGG16 | 0.982 (±0.010) | 0.977 * (±0.010) | 0.953 (±0.033) | 0.965 * (±0.013) |
VGG16-PRETR | 0.869 (±0.010) | 0.940 (±0.007) | 0.641 (±0.027) | 0.794 (±0.013) |
VGG16-PRETR-FINETUNE | 0.910 (±0.051) | 0.961 (±0.038) | 0.803 (±0.099) | 0.884 (±0.039) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Seo, G.; Kim, D.B.; Kim, M.; Shin, J.-H. Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images. Appl. Sci. 2021, 11, 7541. https://doi.org/10.3390/app11167541
Lee C, Seo G, Kim DB, Kim M, Shin J-H. Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images. Applied Sciences. 2021; 11(16):7541. https://doi.org/10.3390/app11167541
Chicago/Turabian StyleLee, Chaekyo, Gijeong Seo, Duck Bong Kim, Minjae Kim, and Jong-Ho Shin. 2021. "Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images" Applied Sciences 11, no. 16: 7541. https://doi.org/10.3390/app11167541
APA StyleLee, C., Seo, G., Kim, D. B., Kim, M., & Shin, J. -H. (2021). Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images. Applied Sciences, 11(16), 7541. https://doi.org/10.3390/app11167541