Deep Learning Applications in Geosciences: Insights into Ichnological Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Network Architecture
3. Results and Discussion
3.1. Experimental Results 1: Unbioturbated versus Bioturbated Facies
3.2. Experimental Results 2: BI 0 vs. BI 1–2 vs. BI 3–6
4. Future Applications
5. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Hao, H.; Guo, R.; Gu, Q.; Hu, X. Machine learning application to automatically classify heavy minerals in river sand by using sem/eds data. Miner. Eng. 2019, 143, 105899. [Google Scholar] [CrossRef]
- Halotel, J.; Demyanov, V.; Gardiner, A. Value of geologically derived features in machine learning facies classification. Math. Geosci. 2020, 52, 5–29. [Google Scholar] [CrossRef] [Green Version]
- Witsil, A.J.C.; Johnson, J.B. Volcano video data characterized and classified using computer vision and machine learning algorithms. Geosci. Front. 2020, 11, 1789–1803. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Surianam, F.; Marfurt, K.; Pranter, M. Convolutional neural networks as aid in core lithofacies classification. Interpretation 2019, 7, SF27–SF40. [Google Scholar] [CrossRef]
- Bromley, R.G. Trace Fossils: Biology, Taphonomy and Applications, 2nd ed.; Chapman and Hall: London, UK, 1996; p. 361. [Google Scholar]
- Gingras, M.K.; Bann, K.L.; MacEachern, J.A.; Waldron, J.; Pemberton, S.G. A Conceptual Framework for the Application of Trace Fossils. In Applied ichnology; MacEachern, J.A., Bann, K.L., Gingras, M.K., Pemberton, S.G., Eds.; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 2007; pp. 1–26. [Google Scholar]
- MacEachern, J.A.; Bann, K.L.; Pemberton, S.G.; Gingras, M.K. The Ichnofacies Paradigm: High-Resolution Paleoenvironmental Interpretation of the Rock Record. In Applied ichnology; MacEachern, J.A., Bann, K.L., Gingras, M.K., Pemberton, S.G., Eds.; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 2007; pp. 27–64. [Google Scholar]
- Dashtgard, S.E.; Gingras, M.K. Marine Invertebrate Neoichnology. In Developments in Sedimentology; Knaust, D., Bromley, R.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 273–295. [Google Scholar]
- Gingras, M.K.; MacEachern, J.A.; Dashtgard, S.E.; Zonneveld, J.-P.; Schoengut, J.; Ranger, M.J.; Pemberton, S.G. Estuaries. In Developments in Sedimentology; Knaust, D., Bromley, R.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 463–505. [Google Scholar]
- MacEachern, J.A.; Bann, K.L.; Gingras, M.K.; Zonneveld, J.-P.; Dashtgard, S.E.; Pemberton, S.G. The Ichnofacies Paradigm. In Developments in Sedimentology; Knaust, D., Bromley, R.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 103–138. [Google Scholar]
- Ayranci, K.; Dashtgard, S.E.; MacEachern, J.A. A quantitative assessment of the neoichnology and biology of a delta front and prodelta, and implications for delta ichnology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 409, 114–134. [Google Scholar] [CrossRef]
- MacEachern, J.A.; Bann, K.L. The phycosiphon ichnofacies and the rosselia ichnofacies: Two new ichnofacies for marine deltaic environments. J. Sediment. Res. 2020, 90, 855–886. [Google Scholar] [CrossRef]
- Taylor, A.M.; Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 1993, 150, 141–148. [Google Scholar] [CrossRef]
- Dashtgard, S.E.; MacEachern, J.A. Unburrowed mudstones may record only slightly lowered oxygen conditions in warm, shallow basins. Geology 2016, 44, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Ayranci, K.; Harris, N.; Dong, T. Sedimentological and ichnological characterization of the middle to upper devonian horn river group, british columbia, canada: Insights into mudstone depositional conditions and processes below storm wave base. J. Sediment. Res. 2018, 88, 1–23. [Google Scholar] [CrossRef]
- George, D.; Shen, H.; Huerta, E. Classification and unsupervised clustering of ligo data with deep transfer learning. Phys. Rev. D 2018, 97, 101501. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly-accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inform. 2018, 15, 2446–2455. [Google Scholar] [CrossRef]
- Park, M.; Sacchi, M. Automatic velocity analysis using convolutional neural network and transfer learning. Geophysics 2019, 85, V33–V43. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Wu, Z.; Ling, Z.; Cao, X.; Guo, K.; Yan, F. Autonomous martian rock image classification based on transfer deep learning methods. Earth Sci. Inform. 2020, 13, 951–963. [Google Scholar] [CrossRef]
- Manzo, M.; Pellino, S. Fighting Together against the Pandemic: Learning Multiple Models on Tomography Images for COVID-19 Diagnosis. AI 2021, 2, 261–273. [Google Scholar] [CrossRef]
Experiment #1 | |||||
---|---|---|---|---|---|
Total Number of Images | Number of Training Images | Number of Test Images | Accurate | Misclassified | |
BI 0 | 530 | 424 | 106 | 104 (98.1%) | 2 (1.9%) |
BI 1–6 | 773 | 617 | 156 | 152 (97.4%) | 4 (2.6%) |
Total | 1303 | 1041 | 262 | 256 (97.7%) | 6 (2.3%) |
Experiment #2 | |||||
---|---|---|---|---|---|
Total Number of Images | Number of Training Images | Number of Test Images | Accurate | Misclassified | |
BI 0 | 530 | 424 | 106 | 100 (94.3%) | 6 (5.7%) |
BI 1–2 | 360 | 287 | 73 | 62 (84.9%) | 11 (15.1%) |
BI 3–6 | 413 | 330 | 83 | 71 (85.5%) | 12 (14.5%) |
Total | 1303 | 1041 | 262 | 233 (88.9%) | 29 (11.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayranci, K.; Yildirim, I.E.; Waheed, U.b.; MacEachern, J.A. Deep Learning Applications in Geosciences: Insights into Ichnological Analysis. Appl. Sci. 2021, 11, 7736. https://doi.org/10.3390/app11167736
Ayranci K, Yildirim IE, Waheed Ub, MacEachern JA. Deep Learning Applications in Geosciences: Insights into Ichnological Analysis. Applied Sciences. 2021; 11(16):7736. https://doi.org/10.3390/app11167736
Chicago/Turabian StyleAyranci, Korhan, Isa E. Yildirim, Umair bin Waheed, and James A. MacEachern. 2021. "Deep Learning Applications in Geosciences: Insights into Ichnological Analysis" Applied Sciences 11, no. 16: 7736. https://doi.org/10.3390/app11167736
APA StyleAyranci, K., Yildirim, I. E., Waheed, U. b., & MacEachern, J. A. (2021). Deep Learning Applications in Geosciences: Insights into Ichnological Analysis. Applied Sciences, 11(16), 7736. https://doi.org/10.3390/app11167736