pH Measurement of Cement-Based Materials: The Effect of Particle Size
Abstract
:1. Introduction
2. Research Methodology
2.1. Materials
2.2. pH Meter Selection and Other Instruments
2.3. Experimental Procedure
- (1)
- Mesh no. 8—to obtain particle size between 2.36 and 4.75 mm diameter;
- (2)
- Mesh no. 16—to obtain particle size between 1.18 and 2.36 mm diameter;
- (3)
- Mesh no. 30—to obtain particle size between 600 µm and 1.18 mm diameter;
- (4)
- Mesh no. 50—to obtain particle size between 300 and 600 µm diameter;
- (5)
- Mesh no. 100—to obtain particle size between 150 and 300 µm diameter;
- (6)
- Base tray—to obtain particle size between less than 150 µm diameter.
3. Results and Discussion
3.1. Effect of Particle Size on pH
3.2. Possibility of Using Samples with Large Particle Sizes in Measuring pH
3.2.1. Effect of Solid-to-Solvent Ratio on pH
3.2.2. Effect of Leaching Time on pH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neville, A.M. Portland cement. In Properties of Concrete, 5th ed.; Pearson Education Limited: London, UK, 2011. [Google Scholar]
- Li, Z.J. Materials for making concrete. In Advanced Concrete Technology; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2011; p. 38. [Google Scholar]
- ACI Committee 222. Protection of Metals in Concrete Against Corrosion; American Concrete Institute: Farmington Hills, MI, USA, 2001. [Google Scholar]
- Taylor, H.F.W. Concrete chemistry. In Cement Chemistry; Academic Press Limited: London, UK, 1990; pp. 383–387. [Google Scholar]
- Kurdowski, W. Concrete Properties. In Cement and Concrete Chemistry; Springer: Dordrecht, The Netherlands, 2014; p. 478. [Google Scholar] [CrossRef]
- McPolin, D.O.; Bashneer, P.A.M.; Long, A.E.; Grattan, K.T.V.; Sun, T. New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials. J. Mater. Civ. Eng. 2007, 19, 936–956. [Google Scholar] [CrossRef]
- Gruyaert, E.; Van Den Heede, P.; De Belie, N. Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient—Effect of carbonation on the pore structure. Cem. Concr. Comp. 2013, 35, 39–48. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Estévez, E.; Argiz, C.; Del Barrio, D. Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cem. Concr. Comp. 2018, 90, 257–265. [Google Scholar] [CrossRef]
- Li, L.F.; Sagüés, A.A.; Poor, N. In situ leaching investigation of pH and nitrite concentration in concrete pore solution. Cem. Concr. Res. 1999, 29, 315–321. [Google Scholar] [CrossRef]
- Rashad, A.M. An investigation on very high volume slag pastes subjected to elevated temperatures. Constr. Build. Mater. 2015, 74, 249–258. [Google Scholar] [CrossRef]
- Shafigh, P.; Yousuf, S.; Lee, C.J.; Ibrahim, Z. The effect of cement mortar composition on the pH value. IOP Conf. Ser. Mater. Sci. Eng. 2020, 770, 012026. [Google Scholar] [CrossRef] [Green Version]
- Gowripalan, N.; Mohamed, H.M. Chloride-ion induced corrosion of galvanized and ordinary steel reinforcement in high-performance concrete. Cem. Concr. Res. 1998, 28, 1119–1131. [Google Scholar] [CrossRef]
- Grubb, J.A.; Limaye, H.S.; Ashok, M.K. Testing pH of Concrete. Concr. Int. 2007, 29, 78–83. [Google Scholar]
- Rostami, V.; Shao, Y.X.; Boyd, A.J. Durability of concrete pipes subjected to combined steam and carbonation curing. Constr. Build. Mater. 2011, 25, 3345–3355. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, Y.X. Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete. Constr. Build. Mater. 2016, 123, 516–526. [Google Scholar] [CrossRef]
- Heng, M.; Murata, K. Aging of concrete buildings and determining the pH value on the surface of concrete by using a handy semi-conductive pH meter. Anal. Sci. 2004, 20, 1087–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, V.; Shao, Y.X.; Boyd, A.J.; He, Z. Microstructure of cement paste subject to early carbonation curing. Cem. Concr. Res. 2012, 42, 186–193. [Google Scholar] [CrossRef]
- Kakade, A.M. Measuring concrete surface pH—A proposed test method. Concr. Repair Bull. 2014, 16–20. Available online: https://cdn.ymaws.com/www.icri.org/resource/resmgr/crb/2014marapr/CRBMarApr14_Kakade.pdf (accessed on 16 June 2021).
- Räsänen, V.; Penttala, V. The pH measurement of concrete and smoothing mortar using a concrete powder suspension. Cem. Concr. Res. 2004, 34, 813–820. [Google Scholar] [CrossRef]
- Alonso, M.C.; Calvo, J.L.G.; Walker, C.; Naito, M.; Pettersson, S.; Puigdomenech, I.; Cuñado, M.A.; Vuorio, M.; Weber, H.; Ueda, H.; et al. Development of an Accurate pH Measurement Methodology for the Pore Fluids of Low pH Cementitious Materials; SKB R-12-02; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2012. [Google Scholar]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for measuring pH in concrete: A review. Constr. Build. Mater. 2016, 105, 176–188. [Google Scholar] [CrossRef]
- Barneyback Jr, R.; Diamond, S. Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem. Concr. Res. 1981, 11, 279–285. [Google Scholar] [CrossRef]
- Sagüés, A.A.; Moreno, E.I.; Andrade, C. Evolution of pH during in-situ leaching in small concrete cavities. Cem. Concr. Res. 1997, 27, 1747–1759. [Google Scholar] [CrossRef]
- Manso, S.; Aguado, A. A review of sample preparation and its influence on pH determination in concrete samples. Mater. Construcción 2017, 67, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.C.; Huang, W.H.; Lee, M.Y.; Duong, H.T.H.; Chang, Y.H. Standardized Procedure of Measuring the pH Value of Cement Matrix Material by Ex-Situ Leaching Method (ESL). Crystals 2021, 11, 436. [Google Scholar] [CrossRef]
- Pavlík, V. Water extraction of chloride, hydroxide and other ions from hardened cement pastes. Cem. Concr. Res. 2000, 30, 895–906. [Google Scholar] [CrossRef]
- Björk, F.; Eriksson, C.A. Measurement of alkalinity in concrete by a simple procedure, to investigate transport of alkaline material from the concrete slab to a self-levelling screed. Constr. Build. Mater. 2002, 16, 535–542. [Google Scholar] [CrossRef]
- Li, L.F.; Nam, J.; Hartt, W.H. Ex situ leaching measurement of concrete alkalinity. Cem. Concr. Res. 2005, 35, 277–283. [Google Scholar] [CrossRef]
- Plusquellec, G.; Geiker, M.; Lindgård, J.; Duchesne, J.; Fournier, B.; De Weerdt, K. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem. Concr. Res. 2017, 96, 13–26. [Google Scholar] [CrossRef]
- Shafigh, P.; Asadi, P.; Akhiani, A.R.; Mahyuddin, N.B.; Hashemi, M. Thermal properties of cement mortar with different mix proportions. Mat. Constr. 2020, 70, 224. [Google Scholar] [CrossRef]
- Hanna Instruments. pH. In General Catalog; Hanna Instruments Inc.: Woonsocket, RI, USA, 2020; Volume 34, pp. 2.1–2.170. [Google Scholar]
- Hanna Instruments. Operational guide. In edge® pH Instruction Manual; Hanna Instruments Inc.: Woonsocket, RI, USA; p. 37. Available online: https://www.manualslib.com/manual/1555430/Hanna-Instruments-Edge.html#manual (accessed on 15 June 2021).
- Meyers, R.A. Encyclopedia of Environmental Analysis and Remediation. 8 Volume Set; Wiley-Interscience: New York, NY, USA, 1998; p. 2094. [Google Scholar]
Specimen Particle Size | Reference |
---|---|
Powder from drilling | McPolin et al. [6], Heng and Murata [16], Björk and Eriksson [27] |
<63 µm | Rashad [10] |
150 µm | Manso and Aguado [24] |
<297 µm | Li et al. [28] |
Grind until <80 µm, do not use a sieve | Alonso et al. [20] |
Crush and grind using a vibratory disc mill at 1500 rpm for 30 s, then sieve to <80 µm | Plusquellec et al. [29] |
<500 µm, 500 µm–1 mm, 1–2 mm | Pavlík [26] |
<75 µm, 75–125 µm, 125–250 µm, 250–500 µm, 500 µm–1 mm, 1–2 mm, 2–4 mm, 4–8 mm, 8–16 mm, >16 mm | Räsänen and Penttala [19] |
<850 µm, 850 µm–2 mm, >2 mm | Grubb et al. [13] |
<74 µm, 74–149 µm, 149–297 µm, 297–595 µm | Wang et al. [25] |
Grubb et al. [13] | Räsänen and Penttala [19] | ||
---|---|---|---|
Particle Size | pH Measured | Particle Size | pH Measured |
>2 mm | 11.55 | >16 mm | 12.22 |
<850 µm | 12.48 | <75 µm | 12.81 |
Particle Size | pH Value | ||
---|---|---|---|
In This Study (Mortar) | Wang et al. [25] (Paste) | Räsänen and Penttala [19] (Concrete) | |
2.36–4.75 mm | 12.16 ± 0.04 | N.A. | 12.53 |
1.18–2.36 mm | 12.24 ± 0.02 | N.A. | 12.64 |
600 µm–1.18 mm | 12.27 ± 0.05 | N.A. | 12.72 |
300–600 µm | 12.37 ± 0.02 | 12.73 | 12.74 |
150–300 µm | 12.35 ± 0.02 | 12.73 | 12.77 |
<150 µm | 12.37 ± 0.04 | 12.77 | 12.79 |
Particle Size | Large Particle Size | Fine Particle Size | ||
2.36–4.75 mm (Particle Size Range I) | 1.18–2.36 mm (Particle Size Range II) | 600 µm–1.18 mm (Particle Size Range III) | 300–600 µm (Reference) | |
solid-to-solvent ratio | 1:1 | 1:1 | 1:1 | 1:2 |
pH value (mean ± SD) | 12.23 ± 0.02 | 12.31 ± 0.04 | 12.35 ± 0.02 | 12.35 ± 0.02 |
Particle Size | Large Particle Size | Fine Particle Size | ||
---|---|---|---|---|
2.36–4.75 mm (Particle Size Range I) | 1.18–2.36 mm (Particle Size Range II) | 600 µm–1.18 mm (Particle Size Range III) | 300–600 µm (Reference) | |
Leaching time (min) | 10 | 10 | 10 | 5 |
pH value (mean ± SD) | 12.32 ± 0.03 | 12.38 ± 0.02 | 12.43 ± 0.03 | 12.35 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loh, P.Y.; Shafigh, P.; Katman, H.Y.B.; Ibrahim, Z.; Yousuf, S. pH Measurement of Cement-Based Materials: The Effect of Particle Size. Appl. Sci. 2021, 11, 8000. https://doi.org/10.3390/app11178000
Loh PY, Shafigh P, Katman HYB, Ibrahim Z, Yousuf S. pH Measurement of Cement-Based Materials: The Effect of Particle Size. Applied Sciences. 2021; 11(17):8000. https://doi.org/10.3390/app11178000
Chicago/Turabian StyleLoh, Poh Yee, Payam Shafigh, Herda Yati Binti Katman, Zainah Ibrahim, and Sumra Yousuf. 2021. "pH Measurement of Cement-Based Materials: The Effect of Particle Size" Applied Sciences 11, no. 17: 8000. https://doi.org/10.3390/app11178000
APA StyleLoh, P. Y., Shafigh, P., Katman, H. Y. B., Ibrahim, Z., & Yousuf, S. (2021). pH Measurement of Cement-Based Materials: The Effect of Particle Size. Applied Sciences, 11(17), 8000. https://doi.org/10.3390/app11178000