Subperiosteal Anchorage in Orthodontics: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- S: orthodontic patients treated with subperiosteal anchorage (onplants);
- PI: type of intervention, survival rates, biomechanical properties, advantages and disadvantages of the technique;
- D: in vitro studies, in vivo animal studies, in vivo human studies, case series, cohort studies, randomized controlled trials, systematic reviews and meta-analysis;
- E: qualitative comparison of method and data;
- R: qualitative or mixed method
2.2. Search Strategy
2.3. Keywords Used for Data Collection
2.4. Manuscript Selections
2.5. Research Categories
2.6. Exclusion and Inclusion Criteria
- investigations on subperiosteal orthodontic anchorage
- in vitro and in vivo studies on animals and on humans
- no minimal number of subjects included in the study
- inadequate information about the research topic
- papers published before 1 January 1995
- unable to obtain title and abstract
2.7. Strategy for Collecting Data
3. Results
Manuscript Collection and Search Strategy
4. Discussion
4.1. Clinical Procedure and Survival Rates
4.2. Biomechanical Properties
4.3. Advantages and Disadvantages
4.4. Treatment Type
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Yang, Z.J.; Zhou, J.; Xiong, P.; Wang, Q.; Yang, Y.; Hu, Y.; Hu, J.T. Comparison of Anchorage Efficiency of Orthodontic Mini-implant and Conventional Anchorage Reinforcement in Patients Requiring Maximum Orthodontic Anchorage: A Systematic Review and Meta-analysis. J. Evid. Based Dent. Pract. 2020, 20, 101401. [Google Scholar] [CrossRef] [PubMed]
- Kakali, L.; Alharbi, M.; Pandis, N.; Gkantidis, N.; Kloukos, D. Success of palatal implants or mini-screws placed median or paramedian for the reinforcement of anchorage during orthodontic treatment: A systematic review. Eur. J. Orthod. 2019, 41, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yun, H.S.; Park, H.D.; Kim, D.H.; Park, Y.C. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 177–182. [Google Scholar] [CrossRef]
- Wehrbein, H.; Feifel, H.; Diedrich, P. Palatal implant anchorage reinforcement of posterior teeth: A prospective study. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 678–686. [Google Scholar] [CrossRef]
- Wehrbein, H.; Merz, B.R.; Diedrich, P. Palatal bone support for orthodontic implant anchorage—A clinical and radiological study. Eur. J. Orthod. 1999, 21, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, O.; Suh, Y.I.; Caruso, J. Early healing events following placement of a palatal subperiosteal orthodontic anchor: A pilot study. Int. J. Oral Maxillofac. Implant. 2006, 21, 623–628. [Google Scholar]
- Janssens, F.; Swennen, G.; Dujardin, T.; Glineur, R.; Malevez, C. Use of an onplant as orthodontic anchorage. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 566–570. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, W.C.; Chen, M.Y.; Chang, H.C. Evaluation of total bone and cortical bone thickness of the palate for temporary anchorage device insertion. J. Dent. Sci. 2021, 16, 636–642. [Google Scholar] [CrossRef]
- Block, M.S.; Hoffman, D.R. A new device for absolute anchorage for orthodontics. Am. J. Orthod. Dentofac. Orthop. 1995, 107, 251–258. [Google Scholar] [CrossRef]
- Armbruster, P.C.; Block, M.S. Onplant-supported orthodontic anchorage. Atlas Oral Maxillofac. Surg. Clin. N. Am. 2001, 9, 53–74. [Google Scholar] [CrossRef]
- Kikuchi, M.; Itoh, S.; Ichinose, S.; Shinomiya, K.; Tanaka, J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001, 22, 1705–1711. [Google Scholar] [CrossRef]
- Bondemark, L.F.; Feldmann, I.; Feldmann, H. Distal molar movement with an intra-arch device provided with the Onplant System for absolute anchorage. World J. Orthod. 2002, 3, 117–124. [Google Scholar]
- Hassan, A.H.; Evans, C.A.; Zaki, A.M.; George, A. Use of bone morphogenetic protein-2 and dentin matrix protein-1 to enhance the osteointegration of the Onplant system. Connect. Tissue Res. 2003, 44, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Ngan, P.; Han, G.; Qi, L.G.; Wei, S.H. Use of onplants as stable anchorage for facemask treatment: A case report. Angle Orthod. 2005, 75, 453–460. [Google Scholar] [PubMed]
- Chen, X.; Chen, G.; He, H.; Peng, C.; Zhang, T.; Ngan, P. Osseointegration and biomechanical properties of the onplant system. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 278-e1. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, I.; List, T.; Feldmann, H.; Bondemark, L. Pain intensity and discomfort following surgical placement of orthodontic anchoring units and premolar extraction: A randomized controlled trial. Angle Orthod. 2007, 77, 578–585. [Google Scholar] [CrossRef]
- Crismani, A.G.; Bernhart, T.; Tangl, S.; Celar, A.G.; Fugger, G.; Gruber, R.; Bantleon, H.P.; Watzek, G. Osseointegration of a subperiosteal anchoring device in the minipig mandible. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 743–747. [Google Scholar] [CrossRef]
- Feldmann, I.; Bondemark, L. Anchorage capacity of osseointegrated and conventional anchorage systems: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 339-e19. [Google Scholar] [CrossRef]
- Niwa, K.; Ogawa, K.; Miyazawa, K.; Aoki, T.; Kawai, T.; Goto, S. Application of alpha-tricalcium phosphate coatings on titanium subperiosteal orthodontic implants reduces the time for absolute anchorage: A study using rabbit femora. Dent. Mater. J. 2009, 28, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, I.; List, T.; Bondemark, L. Orthodontic anchoring techniques and its influence on pain, discomfort, and jaw function—A randomized controlled trial. Eur. J. Orthod. 2012, 34, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Uezono, M.; Takakuda, K.; Kikuchi, M.; Suzuki, S.; Moriyama, K. Hydroxyapatite/collagen nanocomposite-coated titanium rod for achieving rapid osseointegration onto bone surface. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1031–1038. [Google Scholar] [CrossRef]
- Uezono, M.; Takakuda, K.; Kikuchi, M.; Suzuki, S.; Moriyama, K. Optimum cross-section for hydroxyapatite/collagen nanocomposite-coated subperiosteal devices. BioMed Res. Int. 2013, 26, 23. [Google Scholar]
- Schmid, J.; Brunold, S.; Bertl, M.; Ulmer, H.; Kuhn, V.; Crismani, A.G. Biofunctionalization of onplants to enhance their osseointegration. Int. J. Stomatol. Occlusion Med. 2014, 7, 105–110. [Google Scholar] [CrossRef]
- Ogasawara, T.; Uezono, M.; Takakuda, K.; Kikuchi, M.; Suzuki, S.; Moriyama, K. Shape Optimization of Bone-Bonding Subperiosteal Devices with Finite Element Analysis. BioMed Res. Int. 2017, 2017, 3609062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwanami-Kadowaki, K.; Uchikoshi, T.; Uezono, M.; Kikuchi, M.; Moriyama, K. Development of novel bone-like nanocomposite coating of hydroxyapatite/collagen on titanium by modified electrophoretic deposition. J. Biomed. Mater. Res. A 2021, 109, 1905–1911. [Google Scholar] [CrossRef]
- Farhangfar, A.; Bogowicz, P.; Heo, G.; Lagravere, M.O. Palatal bone resorption in bone-anchored maxillary expander treatment. Int. Orthod. 2012, 10, 274–288. [Google Scholar] [CrossRef]
- Heuberer, S.; Ulm, C.; Zauza, K.; Zechner, W.; Watzek, G.; Dvorak, G. Effectiveness of subperiosteal bone anchor (Onplant) placement in the anterior highly atrophic maxilla for cross-arch prosthetic rehabilitation: Results from a pilot study. Eur. J. Oral Implantol. 2016, 9, 291–297. [Google Scholar]
- Dalessandri, D.; Salgarello, S.; Dalessandri, M.; Lazzaroni, E.; Piancino, M.; Paganelli, C.; Maiorana, C.; Santoro, F. Determinants for success rates of temporary anchorage devices in orthodontics: A meta-analysis (n > 50). Eur. J. Orthod. 2014, 36, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Golovcencu, L.; Romanec, C.; Martu, A.; Anistoroaiei, D.; Pacurar, M. Particularities of Orthodontic Treatment in Patients with Dental Anomalies that Need Orthodontic—Restorative Therapeutic Approac. Rev. Chim. 2019, 70, 3046–3049. [Google Scholar] [CrossRef]
- Martu, A.; Agop-Forna, D.; Luchian, I.; Toma, V.; Picus, M.; Solomon, S. Influence of laser therapy as an adjunct to periodontaly optimizing orthodontic tooth movement. Rom. J. Oral Rehabil. 2019, 11, 161–169. [Google Scholar]
- Heuberer, S.; Dvorak, G.; Zauza, K.; Watzek, G. The use of onplants and implants in children with severe oligodontia: A retrospective evaluation. Clin. Oral Implant. Res. 2012, 23, 827–831. [Google Scholar] [CrossRef] [PubMed]
Authors (Year) [Reference] | Type of Study |
---|---|
Block and Hoffmann (1995) [9] | In vivo animal study |
Armbruster and Block (2001) [10] | Case series |
Kikuchi et al. (2001) [11] | In vitro study |
Janssens et al. (2002) [7] | Case report |
Bondemark et al. (2002) [12] | Case report |
Hassan et al. (2003) [13] | In vivo animal study |
Hong et al. (2005) [14] | Case report |
Hoffmann et al. (2006) [6] | Pilot study |
Chen et al. (2007) [15] | In vivo animal study |
Feldmann et al. (2007) [16] | Randomized controlled trial |
Crismani et al. (2008) [17] | In vivo animal study |
Feldmann and Bondemark (2008) [18] | Randomized controlled trial |
Niwa et al. (2009) [19] | In vivo animal study |
Feldmann et al. (2012) [20] | Randomized controlled trial |
Uezono et al. (2013) [21] | In vivo animal study |
Uezono et al. (2013) [22] | In vitro study |
Schmid et al. (2014) [23] | In vivo animal study |
Ogasawara et al. (2017) [24] | In vitro study |
Iwanami-Kadowaki et al. (2021) [25] | In vitro study |
Authors (Year) [Reference] | Type of Study | No. of Patients | Mean Patient Age (Years) | No. of Onplants | Percentage Failure | Cause of Failure (No. of Failed Onplants) |
---|---|---|---|---|---|---|
Hoffmann et al. (2006) [6] | Pilot study | 8 | 30.1 ± 15.6 | 8 | 12.5% | No osseointegration (1) |
Feldmann and Bondemark (2008) [18] | Randomized clinical trial | 29 | 14.0 ± 1.53 | 29 | 17.2% | No osseointegration (1) Technical problems (2) Discontinued treatment (1) Anchorage loss (1) |
Authors (Year) [Reference] | Appliance | No. of Onplants | Use of Onplants |
---|---|---|---|
Armbruster and Block (2001) [10] | Transpalatal bar | 2 | Anchorage for space closure |
Janssens et al. (2002) [7] | Transpalatal bar | 1 | Anchorage for molar extrusion |
Bondemark and Feldmann (2002) [12] | Transpalatal bar | 1 | Anchorage for molar distalization |
Hong et al. (2005) [14] | Facemask | 1 | Anchorage for maxillary orthopedic treatment |
Feldmann and Bondemark (2008) [18] | Transpalatal bar | 30 | Anchorage for space closure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafin, M.; Maspero, C.; Bocchieri, S.; Fastuca, R.; Caprioglio, A. Subperiosteal Anchorage in Orthodontics: A Narrative Review. Appl. Sci. 2021, 11, 8376. https://doi.org/10.3390/app11188376
Serafin M, Maspero C, Bocchieri S, Fastuca R, Caprioglio A. Subperiosteal Anchorage in Orthodontics: A Narrative Review. Applied Sciences. 2021; 11(18):8376. https://doi.org/10.3390/app11188376
Chicago/Turabian StyleSerafin, Marco, Cinzia Maspero, Salvatore Bocchieri, Rosamaria Fastuca, and Alberto Caprioglio. 2021. "Subperiosteal Anchorage in Orthodontics: A Narrative Review" Applied Sciences 11, no. 18: 8376. https://doi.org/10.3390/app11188376
APA StyleSerafin, M., Maspero, C., Bocchieri, S., Fastuca, R., & Caprioglio, A. (2021). Subperiosteal Anchorage in Orthodontics: A Narrative Review. Applied Sciences, 11(18), 8376. https://doi.org/10.3390/app11188376