Aerosol–Cloud Interaction at the Summit of Mt. Fuji, Japan: Factors Influencing Cloud Droplet Number Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation
2.2. Data Processing
2.3. Classification of Air Mass Transport Pathways
3. Results and Discussion
3.1. Overview
3.2. CCN Properties and Their Relationship to Air Mass Origins
3.3. Evaluation of SSeff and Cloud Droplet Properties
3.4. Factors Controlling the Cloud Droplet Concentration
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Köhler, H. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.P.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Furutani, H.; Dall’osto, M.; Roberts, G.C.; Prather, K.A. Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. Atmos. Environ. 2008, 42, 3130–3142. [Google Scholar] [CrossRef]
- Schmale, J.; Henning, S.; Decesari, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Pöhlker, M.L.; Brito, J.; Bougiatioti, A.; et al. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmos. Chem. Phys. 2018, 18, 2853–2881. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Yum, S.S. A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Bound.-Layer Meteorol. 2018, 143, 481–505. [Google Scholar] [CrossRef]
- Stolaki, S.; Pytharoulis, I.; Karacostas, Y. A study of fog characteristics using a coupled WRF–COBEL model over Thessaloniki airport, Greece. Pure Appl. Geophys. 2012, 169, 961–981. [Google Scholar] [CrossRef]
- Zhao, C.; Klein, S.A.; Xie, S.; Liu, X.; Boyle, J.S.; Zhang, Y. Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett. 2012, 39, L08806. [Google Scholar] [CrossRef] [Green Version]
- Anttila, T.; Vaattovaara, P.; Komppula, M.; Hyvärinen, A.P.; Lihavainen, H.; Kerminen, V.M.; Laaksonen, A. Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE): Method development and data evaluation. Atmos. Chem. Phys. 2009, 9, 4841–4854. [Google Scholar] [CrossRef] [Green Version]
- Asmi, E.; Freney, E.; Hervo, M.; Picard, D.; Rose, C.; Colomb, A.; Sellegri, K. Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France. Atmos. Chem. Phys. 2012, 12, 11589–11607. [Google Scholar] [CrossRef] [Green Version]
- Ditas, F.; Shaw, R.A.; Siebert, H.; Simmel, M.; Wehner, B.; Wiedensohler, A. Aerosols-cloud microphysics-thermodynamics-turbulence: Evaluating supersaturation in a marine stratocumulus cloud. Atmos. Chem. Phys. 2012, 12, 2459–2468. [Google Scholar] [CrossRef] [Green Version]
- Hammer, E.; Bukowiecki, N.; Gysel, M.; Jurányi, Z.; Hoyle, C.R.; Vogt, R.; Baltensperger, U.; Weingartner, E. Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.). Atmos. Chem. Phys. 2014, 14, 1123–1139. [Google Scholar] [CrossRef] [Green Version]
- Moteki, N.; Mori, T.; Matsui, H.; Ohata, S. Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models. npj Clim. Atmos. Sci. 2019, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, M.; Ishizaka, Y.; Minda, H.; Kazaoka, R.; Jensen, J.B.; Gras, J.L.; Nakajima, T. Vertical distribution of cloud condensation nuclei concentrations and their effect on microphysical properties of clouds over the sea near the southwest islands of Japan. J. Geophys. Res. 2005, 110, D10203. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, D.J.; Rosen, J.M.; Harder, J.W.; Hereford, J.V. Balloon-borne measurements of aerosol, condensation nuclei, and cloud particles in the stratosphere at McMurdo Station, Antarctica, during the spring of 1987. J. Geophys. Res. 1989, 94, 11253–11269. [Google Scholar] [CrossRef]
- Henning, S.; Weingartner, E.; Schmidt, S.; Wendisch, M.; Gäggeler, H.W.; Baltensperger, U. Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl). Tellus B 2002, 54, 82–95. [Google Scholar] [CrossRef]
- Jurányi, Z.; Gysel, M.; Weingartner, E.; Bukowiecki, N.; Kammermann, L.; Baltensperger, U. A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. J. Geophys. Res. 2011, 116, D10204. [Google Scholar] [CrossRef]
- Kammermann, L.; Gysel, M.; Weingartner, E.; Baltensperger, U. 13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.). Atmos. Chem. Phys. 2010, 10, 10717–10732. [Google Scholar] [CrossRef] [Green Version]
- Motos, G.; Schmale, J.; Corbin, J.C.; Modini, R.L.; Karlen, N.; Bertò, M.; Baltensperger, U.; Gysel-Beer, M. Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580 m a.s.l.). Atmos. Chem. Phys. 2019, 19, 3833–3855. [Google Scholar] [CrossRef] [Green Version]
- Henning, S.; Dieckmann, K.; Ignatius, K.; Schäfer, M.; Zedler, P.; Harris, E.; Sinha, B.; Van Pinxteren, D.; Mertes, S.; Birmili, W.; et al. Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010. Atmos. Chem. Phys. 2014, 14, 7859–7868. [Google Scholar] [CrossRef] [Green Version]
- Friedman, B.; Zelenyuk, A.; Beranek, J.; Kulkarni, G.; Pekour, M.; Gannet Hallar, A.; McCubbin, I.B.; Thornton, J.A.; Cziczo, D.J. Aerosol measurements at a high-elevation site: Composition, size, and cloud condensation nuclei activity. Atmos. Chem. Phys. 2013, 11839–11851. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Ye, W.C.; Wang, S.H.; Tsay, S.C.; Chen, W.N.; Lin, N.H.; Lee, C.T.; Hung, H.M.; Chuang, M.T.; Chantara, S. Investigation of the CCN activity, BC and UVBC mass concentrations of biomass burning aerosols during the 2013 BASELInE campaign. Aerosol Air Qual. Res. 2016, 16, 2742–2756. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Shiobara, Y.; Uchiyama, K.; Miura, K.; Okochi, H.; Kobayashi, H.; Hatakeyama, S. Atmospheric CO, O3, and SO2 measurements at the summit of Mt. Fuji during the summer of 2013. Aerosol Air Qual. Res. 2016, 16, 2368–2377. [Google Scholar] [CrossRef] [Green Version]
- Nomura, S.; Mukai, H.; Terao, Y.; Machida, T.; Nojiri, Y. Six years of atmospheric CO2 observations at Mt. Fuji recorded with a battery-powered measurement system. Atmos. Meas. Tech. 2017, 10, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.C.; Nenes, A. A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements. Aerosol Sci. Tech. 2005, 39, 206–221. [Google Scholar] [CrossRef]
- Brechtel, F.J.; Kreidenweis, S.M. Predicting Particle Critical Supersaturation from Hygroscopic Growth Measurements in the Humidified TDMA. Part II: Laboratory and Ambient Studies. J. Atmos. Sci. 2000, 57, 1872–1887. [Google Scholar] [CrossRef]
- Muraki, H. Fuji Sancho no Kaze no Kansoku. Kishou Kenkyu Note 1974, 118, 65–74. (In Japanese) [Google Scholar]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.; Gunthe, S.S.; Mikhailov, E.; Frank, G.P.; Dusek, U.; Andreas, M.O.; Pöschl, U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 2008, 8, 1153–1179. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Cloud Physics. In Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 761–827. [Google Scholar]
- Rolph, G.; Stein, A.; Stunder, B. Real-time environmental applications and display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Hasegawa, T.; Miura, K.; Iinuma, K.; Kobayashi, H. Measurement of Cloud Condensation Nuclei at the summit of Mt. Fuji. Earozoru Kenkyu 2012, 27, 189–196, (In Japanese with English abstract). [Google Scholar]
- Zhou, S.; Collier, S.; Jaffe, D.A.; Zhang, Q. Free tropospheric aerosols at the Mt. Bachelor Observatory: More oxidized and higher sulfate content compared to boundary layer aerosols. Atmos. Chem. Phys. 2019, 19, 1571–1585. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, I.; Hayashi, K.; Igarashi, Y.; Takahashi, H.; Sawa, Y.; Ogura, N.; Akagi, T.; Dokiya, Y. Seasonal variation of water-soluble ion species in the atmospheric aerosols at the summit of Mt. Fuji. Atmos. Environ. 2008, 42, 8027–8035. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef]
- Kaneyasu, N.; Igarashi, Y. Light absorption characteristics of atmospheric aerosols observed at the summit of Mt. Fuji in early summer. Earozoru Kenkyu 2007, 22, 318–321, (In Japanese with English abstract). [Google Scholar]
- Gunthe, S.S.; King, S.M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D.K.; Jimenez, J.L.; Artaxo, P.; Andreae, M.O.; Martin, S.T.; et al. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: Size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys. 2009, 9, 7551–7575. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, Y.; Kinouchi, K.; Watanabe, K.; Yamazaki, N.; Matsuki, A. Simultaneous measurement of CCN activity and chemical composition of fine-mode aerosols at Noto peninsula, Japan, in autumn 2012. Aerosol Air Qual. Res. 2016, 16, 2107–2118. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M.O.; Pöschl, U. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China–Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys. 2010, 10, 3365–3383. [Google Scholar] [CrossRef] [Green Version]
- Tunved, P.; Ström, J.; Hansson, H.C. An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten. Atmos. Chem. Phys. 2004, 4, 2581–2592. [Google Scholar] [CrossRef] [Green Version]
- Khvorostyanov, V.I.; Curry, J.A. Clouds and Their Properties. In Thermodynamics, Kinetics, and Microphysics of Clouds; Cambridge University Press: New York, NY, USA, 2014; pp. 9–44. [Google Scholar]
- Bennartz, R.; Rausch, J. Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations. Atmos. Chem. Phys. 2017, 17, 9815–9836. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl. 1959, 43, 243–249. [Google Scholar] [CrossRef]
NCN (cm−3) | |||||
---|---|---|---|---|---|
N | 25th | Median | Mean | 75th | |
Entire period | 502 | 231.0 | 414.2 | 527.7 | 590.7 |
Continental | 167 | 383.3 | 459.4 | 617.9 | 595.1 |
Pacific | 188 | 153.8 | 205.1 | 391.5 | 433.4 |
Others | 147 | 272.9 | 450.6 | 524.5 | 610.7 |
NCCN (cm−3) (0.16% SS) | NCCN (cm−3) (0.21% SS) | |||||||||
N | 25th | Median | Mean | 75th | N | 25th | Median | Mean | 75th | |
Entire period | 487 | 14.2 | 41.3 | 80.9 | 117.8 | 491 | 24.4 | 61.3 | 107.8 | 160.8 |
Continental | 167 | 44.5 | 82.6 | 176.1 | 117.2 | 167 | 68.1 | 114.9 | 155.3 | 228.0 |
Pacific | 179 | 7.6 | 12.8 | 22.4 | 24.8 | 184 | 14.1 | 22.9 | 34.0 | 39.4 |
Others | 141 | 30.1 | 62.3 | 112.3 | 181.2 | 140 | 43.1 | 90.4 | 147.9 | 230.2 |
NCCN (cm−3) (0.36% SS) | NCCN (cm−3) (0.55% SS) | |||||||||
N | 25th | Median | Mean | 75th | N | 25th | Median | Mean | 75th | |
Entire period | 491 | 50.2 | 113.3 | 169.7 | 260.2 | 492 | 76.2 | 181.5 | 224.2 | 341.1 |
Continental | 167 | 135.1 | 204.2 | 239.9 | 324.4 | 167 | 206.2 | 269.7 | 310.0 | 395.2 |
Pacific | 185 | 27.9 | 46.2 | 64.4 | 73.3 | 185 | 37.8 | 64.6 | 92.5 | 103.0 |
Others | 139 | 91.4 | 158.2 | 225.4 | 355.6 | 140 | 138.2 | 229.9 | 295.7 | 460.5 |
Air Mass Origin | ||||
---|---|---|---|---|
Entire Period | Continental | Pacific | Others | |
SSeff (%) | 0.34 (0.34) | 0.24 (0.14) | 0.44 (0.41) | 0.26 (0.26) |
w (m s−1) | 1.29 (1.21) | 1.03 (1.32) | 1.40 (0.83) | 1.37 (1.63) |
LWC (g m−3) | 0.05 (0.05) | 0.08 (0.06) | 0.03 (0.02) | 0.06 (0.05) |
NCD (cm−3) | 78 (78) | 144 (92) | 36 (32) | 86 (65) |
Reff (μm) | 8.1 (2.5) | 6.5 (1.7) | 9.3 (2.5) | 7.6 (2.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwamoto, Y.; Watanabe, A.; Kataoka, R.; Uematsu, M.; Miura, K. Aerosol–Cloud Interaction at the Summit of Mt. Fuji, Japan: Factors Influencing Cloud Droplet Number Concentrations. Appl. Sci. 2021, 11, 8439. https://doi.org/10.3390/app11188439
Iwamoto Y, Watanabe A, Kataoka R, Uematsu M, Miura K. Aerosol–Cloud Interaction at the Summit of Mt. Fuji, Japan: Factors Influencing Cloud Droplet Number Concentrations. Applied Sciences. 2021; 11(18):8439. https://doi.org/10.3390/app11188439
Chicago/Turabian StyleIwamoto, Yoko, Ayami Watanabe, Ryota Kataoka, Mitsuo Uematsu, and Kazuhiko Miura. 2021. "Aerosol–Cloud Interaction at the Summit of Mt. Fuji, Japan: Factors Influencing Cloud Droplet Number Concentrations" Applied Sciences 11, no. 18: 8439. https://doi.org/10.3390/app11188439
APA StyleIwamoto, Y., Watanabe, A., Kataoka, R., Uematsu, M., & Miura, K. (2021). Aerosol–Cloud Interaction at the Summit of Mt. Fuji, Japan: Factors Influencing Cloud Droplet Number Concentrations. Applied Sciences, 11(18), 8439. https://doi.org/10.3390/app11188439