Synthesis and Properties of Electrically Conductive/Nitrogen Grain Boundaries Incorporated Ultrananocrystalline Diamond (N-UNCD) Thin Films Grown by Microwave Plasma Chemical Vapor Deposition (MPCVD)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auciello, O.; Sumant, A.V. Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diam. Relat. Mater. 2010, 19, 699–718. [Google Scholar] [CrossRef]
- Tirado, P.; Alcantar-Peña, J.J.; Obaldia, E.; Kudriavtsev, Y.; Garcia, R.; Auciello, O. Boron doping of ultrananocrystalline diamond films by thermal diffusion process. MRS Commun. 2018, 8, 1111–1118. [Google Scholar] [CrossRef]
- Water Electrolysis-Based Water Purification System (DiamonoxTM), with Corrosion Resistant B-UNCD-Coated Metal Electrodes Is in the Market. 2020. Available online: www.thindiamond.com (accessed on 17 November 2020).
- Gruen, D.M.; Krauss, A.R.; Auciello, O.; Carlisle, J.A. N-Type Doping of NCD Films with Nitrogen and Electrodes Made There from. U.S. Patent 6,793,849 B1, 21 September 2004. [Google Scholar]
- Battacharyya, S.; Auciello, O.; Birrell, J.; Carlisle, J.A.; Curtiss, L.A.; Goyete, A.N.; Gruen, D.M.; Krauss, A.R.; Schlueter, J.; Sumant, A.; et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 2001, 79, 1441. [Google Scholar] [CrossRef]
- Birrell, J.; Gerbi, J.E.; Auciello, O.; Gibson, J.M.; Gruen, D.M.; Carlisle, J.A. Bonding structure in nitrogen doped ultrananocrystalline diamond. J. Appl. Phys. 2003, 93, 5606. [Google Scholar] [CrossRef]
- Sankaran, K.J.; Huang, B.R.; Saravanan, A.; Manoharan, D.; Tai, N.H. Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition. Plasma Process. Polym. 2016, 13, 419–428. [Google Scholar] [CrossRef]
- Mertens, M.; Mohr, M.; Wiora, N.; Brühne, K.; Fecht, H.-J. N-type conductive ultrananocrystalline diamond films grown by hot filament CVD. J. Nanomater. 2015, 2015, 527025. [Google Scholar] [CrossRef]
- Bhattacharyya, S. Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond. Phys. Rev. 2004, 70, 125412. [Google Scholar] [CrossRef]
- Kraft, A. Doped diamond: A compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2007, 2, 355–385. [Google Scholar]
- Zaitseva, A.M.; Kazuchitsc, N.M.; Kazuchitsc, V.N.; Moeb, K.S.; Rusetskyc, M.S.; Korolikc, O.V.; Kitajimad, K.; Butlere, J.E.; Wang, W. Nitrogen-doped CVD diamond: Nitrogen concentration, color and internal stress. Diam. Relat. Mater. 2020, 105, 107794. [Google Scholar] [CrossRef]
- Downs, R.T.; Bartelmehs, K.L.; Gibbs, G.V.; Boisen, M.B. Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am. Mineral. 1993, 78, 1104–1107. [Google Scholar]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, R., Jr. NIST Standard Reference Database 20, Version 3.3 (Web Version). 2003. Available online: https://srdata.nist.gov/xps/Version_his.aspx (accessed on 17 November 2020).
- Veyan, J.F.; Obaldia, E.; Alcantar-Peña, J.J.; Montes-Gutierrez, J.; Arellano -Jimenez, M.J.; Yacaman, M.J.; Auciello, O. Argon atoms insertion in diamond: New insights in the identification of carbon C 1s peak in X-ray photoelectron spectroscopy analysis. Carbon 2018, 134, 29–36. [Google Scholar] [CrossRef]
- Filik, J. Raman spectroscopy: A simple, non-destructive way to characterise diamond and diamond-like materials. Spectrosc. Eur. 2005, 17, 10–17. [Google Scholar]
- Birrell, J.; Gerbi, J.E.; Auciello, O.; Gibson, J.M.; Jhonson, J.; Carlisle, J.A. Interpretation of the Raman spectra of ultrananocrystalline diamond. Diam. Relat. Mater. 2005, 14, 86–92. [Google Scholar] [CrossRef]
- Alcantar-Peña, J.J.; Montes, J.; Arellano-Jimenez, M.J.; Ortega Aguilar, J.E.; Berman-Mendoza, D.; García, R.; Yacaman, M.J.; Auciello, O. Low temperature hot filament chemical vapor deposition of Ultrananocrystalline Diamond films with tunable sheet resistance for electronic power devices. Diam. Relat. Mater. 2016, 69, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Tai, N.-H.; Lin, I.N. Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond. Diam. Relat. Mater. 2008, 17, 457–461. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Lin, C.-K.; Chu, Y.-C.; Abouimrane, A.; Chen, Z.; Ren, Y.; Liu, C.-P.; Tzeng, Y.; Auciello, O. Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long life lithium-ion battery. Adv. Mater. 2014, 26, 3724–3729. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.; Auciello, O.; Liu, C.-P.; Lin, C.-K.; Cheng, Y.-W. Nanocrystalline-Diamond/Carbon and Nanocrystalline-Diamond/Silicon Composite Electrodes for Li-Based Batteries. U.S. Patent 9,196,905, 24 November 2015. [Google Scholar]
- Amine, K.; Kanno, R.; Tzeng, Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bull. 2014, 39, 395–401. [Google Scholar] [CrossRef] [Green Version]
Serie 1 (3000 W) | Serie 2 (4000 W) | Serie 3 (4500 W) |
---|---|---|
70 mbar | 70 mbar | 70 mbar |
80 mbar | 80 mbar | 80 mbar |
90 mbar | 90 mbar | 90 mbar |
100 mbar | 100 mbar | 100 mbar |
Pressure (mbar) | FWHM (θ) | Grain Size (nm) |
---|---|---|
70 | 1.20 | 7 |
80 | 1.23 | 7 |
90 | 1.11 | 8 |
100 | 0.93 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Meza, M.; Martínez-Rodríguez, G.; Tirado-Cantú, P.; Montijo-Valenzuela, E.E.; García-Gutiérrez, R. Synthesis and Properties of Electrically Conductive/Nitrogen Grain Boundaries Incorporated Ultrananocrystalline Diamond (N-UNCD) Thin Films Grown by Microwave Plasma Chemical Vapor Deposition (MPCVD). Appl. Sci. 2021, 11, 8443. https://doi.org/10.3390/app11188443
Salgado-Meza M, Martínez-Rodríguez G, Tirado-Cantú P, Montijo-Valenzuela EE, García-Gutiérrez R. Synthesis and Properties of Electrically Conductive/Nitrogen Grain Boundaries Incorporated Ultrananocrystalline Diamond (N-UNCD) Thin Films Grown by Microwave Plasma Chemical Vapor Deposition (MPCVD). Applied Sciences. 2021; 11(18):8443. https://doi.org/10.3390/app11188443
Chicago/Turabian StyleSalgado-Meza, Michelle, Guillermo Martínez-Rodríguez, Pablo Tirado-Cantú, Eliel Eduardo Montijo-Valenzuela, and Rafael García-Gutiérrez. 2021. "Synthesis and Properties of Electrically Conductive/Nitrogen Grain Boundaries Incorporated Ultrananocrystalline Diamond (N-UNCD) Thin Films Grown by Microwave Plasma Chemical Vapor Deposition (MPCVD)" Applied Sciences 11, no. 18: 8443. https://doi.org/10.3390/app11188443
APA StyleSalgado-Meza, M., Martínez-Rodríguez, G., Tirado-Cantú, P., Montijo-Valenzuela, E. E., & García-Gutiérrez, R. (2021). Synthesis and Properties of Electrically Conductive/Nitrogen Grain Boundaries Incorporated Ultrananocrystalline Diamond (N-UNCD) Thin Films Grown by Microwave Plasma Chemical Vapor Deposition (MPCVD). Applied Sciences, 11(18), 8443. https://doi.org/10.3390/app11188443