Influence of Root Canal Fillings on Alveolar Bone Crest Level—An Observational Cross Sectional CBCT Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Patient Population
2.3. Inclusion Criteria
- Adequate quality of CBCT data (no scattering or moving artefacts in the ROI)
- Presence of at least one root canal treated tooth (RCF) and a contralateral matching non-root canal treated tooth (n-RCF)
- Flush root canal filling (root canal should be filled to within 2 mm of the radiographic apex) [18]
- Comparable restauration margins (if present) at or above the level of the cemento-enamel junction (CEJ)
- Incomplete assessability of the radiography
- Missing contralateral matching tooth
- Restoration margin below CEJ
- Apical periodontitis or lateral pathologies
- Interradicular osteolysis, bony defect
- Suspected perforation
- Suspected external resorption
- Inhomogeneous and/or insufficient root canal filling
- Apicoectomy
2.4. Radiographic Examinations
2.5. Evaluation of Radiographs
2.6. Data Analysis
3. Results
3.1. Calibration of the Two Examiners
3.2. Alveolar Bone Crest Level (RCF Versus Non-RCF Teeth)
3.3. Pooled Data (Overall Bone Level of Teeth Examined: RCF and Non-RCF Teeth)
4. Discussion
4.1. CBCT-Analysis
4.2. ABC-Level in Root Canal-Treated Teeth—General Aspects/Prognosis
4.3. ABC-Level—Location, Age and Gender Related Aspects
4.4. Final Appraisal
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dammaschke, T.; Witt, M.; Ott, K.; Schäfer, E. Scanning electron microscopic investigation of incidence, location, and size of accessory foramina in primary and permanent molars. Quintessence Int. 2004, 35, 699–705. [Google Scholar]
- Kerekes, K.; Olsen, I. Similarities in the microfloras of root canals and deep periodontal pockets. Endod Dent Traumatol. 1990, 6, 1–5. Available online: https://pubmed.ncbi.nlm.nih.gov/2202588/ (accessed on 25 March 2021). [CrossRef]
- Sundqvist, G. Taxonomy, ecology, and pathogenicity of the root canal flora. Oral Surg. Oral Med. Oral Pathol. 1994, 78, 522–530. Available online: https://pubmed.ncbi.nlm.nih.gov/7800383/ (accessed on 25 March 2021). [CrossRef]
- Zehnder, M.; Gold, S.I.; Hasselgren, G. Pathologic interactions in pulpal and periodontal tissues. J. Clin. Periodontol. 2002, 29, 663–671. [Google Scholar] [CrossRef]
- Miyashita, H.; Bergenholtz, G.; Gröndohl, K.; Wennström, J.L. Impact of Endodontic Conditions on Marginal Bone Loss. J. Periodontol. 1998, 69, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Bertl, K.; Suljkanovic, N.; Suljkanovic, L.; Lettner, S.; Esfandeyari, A.; Moritz, A.; Stavropoulos, A.; Bruckmann, C. A root canal filling per se does not have a significant negative effect on the marginal periodontium. J. Clin. Periodontol. 2015, 42, 520–529. [Google Scholar] [CrossRef]
- Adyani-Fard, D.; Kim, T.-S.; Eickholz, P. Interproximal bone loss at contra-lateral teeth with and without root canal filling in periodontitis patients. J. Clin. Periodontol. 2010, 38, 269–275. [Google Scholar] [CrossRef]
- Rodriguez, F.-R.; Paganoni, N.; Eickholz, P.; Weiger, R.; Walter, C. Presence of root canal treatment has no influence on periodontal bone loss. Clin. Oral Investig. 2017, 21, 2741–2748. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, M.; Van Der Weijden, G. Bone level around endodontically treated teeth in periodontitis patients. J. Clin. Periodontol. 2006, 33, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Jansson, L.; Ehnevid, H.; Lindskog, S.; Blomlof, L. The influence of endodontic infection on progression of marginal bone loss in periodontitis. J. Clin. Periodontol. 1995, 22, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Jansson, L. Relationship between apical periodontitis and marginal bone loss at individual level from a general population. Int. Dent. J. 2015, 65, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Scarfe, W.C.; Farman, A.G.; Sukovic, P. Clinical applications of cone-beam computed tomography in dental practice. J. Can. Dent. Assoc. 2006, 72, 75–80. [Google Scholar] [PubMed]
- Raichur, P.S.; Setty, S.B.; Thakur, S.L.; Naikmasur, V.G. Comparison of Radiovisiography and Digital volume tomography to direct surgical measurements in the detection of infrabony defects. J. Clin. Exp. Dent. 2012, 4, e43–e47. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24558524 (accessed on 5 February 2019). [CrossRef]
- Vandenberghe, B.; Jacobs, R.; Yang, J. Detection of periodontal bone loss using digital intraoral and cone beam computed to-mography images: An in vitro assessment of bony and/or infrabony defects. Dentomaxillofac. Radiol. 2008, 37, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Bagis, N.; Kolsuz, M.E.; Kursun, S.; Orhan, K. Comparison of intraoral radiography and cone-beam computed tomography for the detection of periodontal defects: An in vitro study. BMC Oral Health 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, C.C.; Janson, G.; Massaro, C.; Cambiaghi, L.; Garib, D.G. Precision, reproducibility, and accuracy of bone crest level measurements of CBCT cross sections using different resolutions. Angle Orthod. 2015, 86, 535–542. Available online: https://pubmed.ncbi.nlm.nih.gov/26488463/ (accessed on 25 March 2021). [CrossRef] [PubMed] [Green Version]
- Haas, L.F.; Zimmermann, G.S.; De Luca Canto, G.; Flores-Mir, C.; Corrêa, M. Precision of cone beam CT to assess periodontal bone defects: A systematic review and meta-analysis. Dentomaxillofac. Radiol. Br. Inst. Radiol. 2018, 47. Available online: https://pubmed.ncbi.nlm.nih.gov/28869397/ (accessed on 25 March 2021). [CrossRef] [PubMed]
- Kojima, K.; Inamoto, K.; Nagamatsu, K.; Hara, A.; Nakata, K.; Morita, I.; Nakagaki, H.; Nakamura, H. Success rate of endodontic treatment of teeth with vital and nonvital pulps. A meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004, 97, 95–99. [Google Scholar] [CrossRef]
- Eickholz, P.; Kim, T.-S.; Benn, D.K.; Staehle, H.J. Validity of radiographic measurement of interproximal bone loss. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1998, 85, 99–106. [Google Scholar] [CrossRef]
- Hadzik, J.; Kubasiewicz-Ross, P.; Nawrot-Hadzik, I.; Gedrange, T.; Pitułaj, A.; Dominiak, M. Short (6 mm) and Regular Dental Implants in the Posterior Maxilla–7-Years Follow-up Study. J. Clin. Med. 2021, 10, 940. Available online: https://www.mdpi.com/2077-0383/10/5/940 (accessed on 25 March 2021). [CrossRef]
- Khan, S.; Cabanilla, L.L. Periodontal probing depth measurement: A review. Compend. Contin. Educ. Dent. 2009, 30, 12–36. [Google Scholar]
- Eickholz, P.; Riess, T.; Lenhard, M.; Hassfeld, S.; Staehle, H.J. Digital radiography of interproximal bone loss; validity of different filters. J. Clin. Periodontol. 1999, 26, 294–300. [Google Scholar] [CrossRef]
- Merchant, A.T.; Pitiphat, W.; Parker, J.; Joshipura, K.; Kellerman, M.; Douglass, C.W. Can nonstandardized bitewing radiographs be used to assess the presence of alveolar bone loss in epidemiologic studies? Community Dent. Oral Epidemiol. 2004, 32, 271–276. [Google Scholar] [CrossRef]
- Zaki, H.A.M.; Hoffmann, K.R.; Hausmann, E.; Scannapieco, F.A. Is Radiologic Assessment of Alveolar Crest Height Useful to Monitor Periodontal Disease Activity? Dent. Clin. N. Am. 2015, 59, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Tonetti, M.S.; Prato, G.P.; Williams, R.C.; Cortellini, P. Periodontal Regeneration of Human Infrabony Defects. III. Diagnostic Strategies to Detect Bone Gain. J. Periodontol. 1993, 64, 269–277. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Duan, D.; Bai, L.; Zhao, L.; Xu, Y. Cone-beam computed tomography performance in measuring periodontal bone loss. J. Oral Sci. 2019, 61, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.C.; Palomo, L.; Griffith, R.; Hans, M.G. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am. J. Orthod. Dentofac. Orthop. 2010, 137, S109–S119. Available online: http://www.ajodo.org/article/S0889540610000302/fulltext (accessed on 25 March 2021). [CrossRef] [PubMed]
- Schulze, R.; Heil, U.; Gross, D.; Bruellmann, D.D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A review. Dentomaxillofac. Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brüllmann, D.; Schulze, R. Spatial resolution in CBCT machines for dental/maxillofacial applications—what do we know today? Dentomaxillofac. Radiol. 2015, 44, 20140204. [Google Scholar] [CrossRef] [Green Version]
- Abdinian, M.; Yaghini, J.; Jazi, L. Comparison of intraoral digital radiography and cone-beam computed tomography in the measurement of periodontal bone defects. Dent. Med Probl. 2020, 57, 269–273. [Google Scholar] [CrossRef]
- Assiri, H.; Dawasaz, A.A.; AlAhmari, A.; Asiri, Z. Cone beam computed tomography (CBCT) in periodontal diseases: A Systematic review based on the efficacy model. BMC Oral Health. 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Srebrzyńska-Witek, A.; Koszowski, R.; Różyło-Kalinowska, I.; Piskórz, M. CBCT for estimation of the cemento-enamel junction and crestal bone of anterior teeth. Open Med. 2020, 15, 774–781. [Google Scholar] [CrossRef]
- Bhatt, M.; Coil, J.; Chehroudi, B.; Esteves, A.; Aleksejuniene, J.; Macdonald, D. Clinical decision-making and importance of the AAE/AAOMR position statement for CBCT examination in endodontic cases. Int. Endod. J. 2020, 54, 26–37. [Google Scholar] [CrossRef]
- Patel, S.; Brown, J.; Semper, M.; Abella, F.; Mannocci, F. European Society of Endodontology position statement: Use of cone beam computed tomography in Endodontics: European Society of Endodontology (ESE). Int. Endod. J. 2019, 52, 1675–1678. Available online: https://pubmed.ncbi.nlm.nih.gov/31301231/ (accessed on 9 September 2021). [CrossRef] [PubMed] [Green Version]
- Fayad, M.I.; Nair, M.; Levin, M.D.; Benavides, E.; Rubinstein, R.A.; Barghan, S.; Hirschberg, C.S.; Ruprecht, A. AAE and AAOMR Joint Position Statement Use of Cone Beam Computed Tomography in Endodontics. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 508–512. Available online: https://pubmed.ncbi.nlm.nih.gov/26346911/ (accessed on 9 September 2021). [CrossRef] [PubMed]
- Iqbal, M.; Kim, S. For teeth requiring endodontic treatment, what are the differences in outcomes of restored endodontically treated teeth compared to implant restorations? Br. Dent. J. 2007, 203, 333. Available online: https://europepmc.org/ (accessed on 25 March 2021).
- Levin, L.; Halperin-Sternfeld, M. Tooth preservation or implant placement: A systematic Review of long-term tooth and implant survival rates. J. Am. Dent. Assoc. 2013, 144, 1119–1133. Available online: https://pubmed.ncbi.nlm.nih.gov/24080928/ (accessed on 25 March 2021). [CrossRef] [PubMed]
- Prati, C.; Pirani, C.; Zamparini, F.; Gatto, M.R.; Gandolfi, M.G. A 20-year historical prospective cohort study of root canal treatments. A Multilevel analysis. Int. Endod. J. 2018, 51, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Mareschi, P.; Taschieri, S.; Corbella, S. Long-Term Follow-Up of Nonsurgical Endodontic Treatments Performed by One Specialist: A Retrospective Cohort Study about Tooth Survival and Treatment Success. Int. J. Dent. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khalighinejad, N.; Aminoshariae, A.; Kulild, J.C.; Wang, J.; Mickel, A. The Influence of Periodontal Status on Endodontically Treated Teeth: 9-year Survival Analysis. J. Endod. 2017, 43, 1781–1785. Available online: https://pubmed.ncbi.nlm.nih.gov/28822565/41. (accessed on 25 March 2021). [CrossRef] [PubMed]
- Ehnevid, H.; Jansson, L.; Lindskog, S.; Blomlof, L. Periodontal healing in teeth with periapical lesions. A clinical retrospective study. J. Clin. Periodontol. 1993, 20, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, A.; Nikolic, N.; Jacimovic, J.; Pavlovic, O.; Milicic, B.; Beljic-Ivanovic, K.; Miletic, M.; Andric, M.; Milasin, J. Prevalence of Apical Periodontitis and Conventional Nonsurgical Root Canal Treatment in General Adult Population: An Updated Systematic Review and Meta-analysis of Cross-sectional Studies Published between 2012 and 2020. J. Endod. 2020, 46, 1371–1386.e8. Available online: https://pubmed.ncbi.nlm.nih.gov/32673634/ (accessed on 25 March 2021). [CrossRef] [PubMed]
- Petersson, K.; Hakansson, R.; Olsson, B.; Wennberg, A. Follow-up study of endodontic status in an adult Swedish population. Dent. Traumatol. 1991, 7, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Abella, F.; Patel, S.; Duran-Sindreu, F.; Mercade, M.; Bueno, R.; Roig, M. Evaluating the Periapical Status of Teeth with Irreversible Pulpitis by Using Cone-beam Computed Tomography Scanning and Periapical Radiographs. J. Endod. 2012, 38, 1588–1591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-M.; Liang, Y.-H.; Gao, X.-J.; Jiang, L.; van der Sluis, L.; Wu, M.-K. Management of Apical Periodontitis: Healing of Post-treatment Periapical Lesions Present 1 Year after Endodontic Treatment. J. Endod. 2015, 41, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.; Nunn, M.E. Prognosis Versus Actual Outcome. III. The Effectiveness of Clinical Parameters in Accurately Predicting Tooth Survival. J. Periodontol. 1996, 67, 666–674. Available online: https://pubmed.ncbi.nlm.nih.gov/8832477/ (accessed on 25 March 2021). [CrossRef] [Green Version]
- Saminsky, M.; Halperin-Sternfeld, M.; Machtei, E.E.; Horwitz, J. Variables affecting tooth survival and changes in probing depth: A long-term follow-up of periodontitis patients. J. Clin. Periodontol. 2015, 42, 513–519. [Google Scholar] [CrossRef]
- Goodson, J.M.; Haffajee, A.D.; Socransky, S.S. The relationship between attachment level loss and alveolar bone loss. J. Clin. Periodontol. 1984, 11, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Machtei, E.E.; Hausmann, E.; Grossi, S.G.; Dunford, R.; Genco, R.J. The relationship between radiographic and clinical changes in the periodontium. J. Periodontal. Res. 1997, 32, 661–666. [Google Scholar] [CrossRef]
- Huja, S.S.; Fernandez, S.A.; Hill, K.J.; Li, Y. Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat. Rec. Part A: Discov. Mol. Cell. Evol. Biol. 2006, 288A, 1243–1249. [Google Scholar] [CrossRef] [Green Version]
- Huja, S.S.; Beck, F.M. Bone Remodeling in Maxilla, Mandible, and Femur of Young Dogs. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2007, 291, 1–5. [Google Scholar] [CrossRef]
- Von Wowern, N. Bone mass of mandibles. In vitro and in vivo analyses. Dan. Med. Bull. 1986, 33, 23–44. Available online: http://www.ncbi.nlm.nih.gov/pubmed/3948537 (accessed on 6 February 2020).
- Li, J.; Bao, Q.; Chen, S.; Liu, H.; Feng, J.; Qin, H.; Li, A.; Liu, D.; Shen, Y.; Zhao, Y.; et al. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/β-catenin signaling in mice. J. Orthop. Res. 2016, 35, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.O.; Castro, I.O.; De Alencar, A.H.G.; Valladares-Neto, J.; Estrela, C. Cone beam computed tomography evaluation of distance from cementoenamel junction to alveolar crest before and after nonextraction orthodontic treatment. Angle Orthod. 2015, 86, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.A.; Micheelis, W.; Cholmakow-Bodechtel, C.; Hertrampf, K.; Hoffmann, T.; Hertrampf, K.; Füßl-Grünig, E.; Geyer, S.; Holtfreter, B.; Kocher, T.; et al. Fünfte Deutsche Mundgesundheitsstudie (DMS V); Institut Der Deutschen Zahnärzte (IDZ): Koln, Germany, 2016; Available online: https://www.idz.institute/fileadmin/Content/Publikationen-PDF/Bd_35-Fuenfte_Deutsche_Mundgesundheitsstudie_DMS_V.pdf (accessed on 6 February 2020).
- Papapanou, P.N.; Lindhe, J.; Sterrett, J.D.; Eneroth, L. Considerations on the contribution of ageing to loss of periodontal tissue support. J. Clin. Periodontol. 1991, 18, 611–615. [Google Scholar] [CrossRef]
- Mack, F.; Mojon, P.; Budtz-Jorgensen, E.; Kocher, T.; Splieth, C.; Schwahn, C.; Bernhardt, O.; Gesch, D.; Kordass, B.; John, U.; et al. Caries and periodontal disease of the elderly in Pomerania, Germany: Results of the Study of Health in Pomerania. Gerodontology 2004, 21, 27–36. [Google Scholar] [CrossRef]
- Eke, P.I.; Page, R.C.; Wei, L.; Thornton-Evans, G.; Genco, R.J. Update of the Case Definitions for Population-Based Surveillance of Periodontitis. J. Periodontol. 2012, 83, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Persson, R.E.; Persson, G.R. Tooth Loss and Periodontitis in Older Individuals: Results From the Swedish National Study on Aging and Care. J. Periodontol. 2013, 84, 1134–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, W.M.; Shearer, D.M.; Broadbent, J.; Page, L.F.; Poulton, R. The natural history of periodontal attachment loss during the third and fourth decades of life. J. Clin. Periodontol. 2013, 40, 672–680. [Google Scholar] [CrossRef] [Green Version]
- López, R.; Smith, P.C.; Göstemeyer, G.; Schwendicke, F. Ageing, dental caries and periodontal diseases. J. Clin. Periodontol. 2017, 44, S145–S152. [Google Scholar] [CrossRef] [Green Version]
- Shiau, H.J.; Reynolds, M.A. Sex Differences in Destructive Periodontal Disease: A Systematic Review. J. Periodontol. 2010, 81, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Eke, P.; Dye, B.; Wei, L.; Thornton-Evans, G.; Genco, R. Prevalence of Periodontitis in Adults in the United States: 2009 and 2010. J. Dent. Res. 2012, 91, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Bloomgarden, Z.T. Association is not causation, particularly with “adjustment”. J. Diabetes 2014, 6, 195–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Distance CEJ—Alveolar Bone Crest (mm) | |||||||
---|---|---|---|---|---|---|---|
No of Teeth | RCF | Mesial | Distal | Lingual/ Palatal | Buccal | Mean | |
235 | yes | mean ± sd | 2.51 ± 1.09 | 2.70 ± 1.53 | 2.73 ± 1.22 | 2.55 ± 1.12 | 2.64 ± 1.24 |
CI 95% | 2.37–2.65 | 2.49–2.84 | 2.58–2.89 | 2.42–2.70 | 2.51–2.77 | ||
range | 0.28 | 0.35 | 0.41 | 0.28 | 0.26 | ||
235 | no | mean ± sd | 2.52 ± 1.22 | 2.64 ± 1.22 | 2.70 ± 1.10 | 2.59 ± 1.11 | 2.61 ± 1.16 |
CI 95% | 2.37–2.68 | 2.48–2.79 | 2.55–2.84 | 2.45–2.73 | 2.49–2.73 | ||
range | 0.31 | 0.31 | 0.29 | 0.28 | 0.24 | ||
∑470 | p-value | 0.789 | 0.601 | 0.776 | 0.555 | 0.810 |
Distance CEJ—Alveolar Bone Crest (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Location | No of Teeth | RCF | Mesial | Distal | Lingual/ Palatal | Buccal | Mean | Pooled Mean | |
upper jaw | 118 | yes | mean ± sd | 2.56 ± 1.08 | 2.73 ± 1.34 | 2.91 ± 1.21 | 2.67 ± 1.10 | 2.72 ± 1.19 | 2.74 ± 1.22 |
CI 95% | 2.36–2.75 | 2.49–2.98 | 2.68–3.13 | 2.47–2.87 | 2.54–2.89 | ||||
range | 0.39 | 0.49 | 0.45 | 0.40 | 0.35 | ||||
upper jaw | 118 | no | mean ± sd | 2.63 ± 1.27 | 2.71 ± 1.39 | 2.93 ± 1.20 | 2.73 ± 1.11 | 2.76 ± 1.25 | |
CI 95% | 2.40–2.86 | 2.45–2.96 | 2.72–3.16 | 2.54–2.95 | 2.58–2.94 | ||||
range | 0.46 | 0.49 | 0.44 | 0.41 | 0.36 | ||||
upper jaw | 236 | p-value | 0.640 | 0.980 | 0.909 | 0.586 | 0.773 | ||
lower jaw | 117 | yes | mean ± sd | 2.46 ± 1.09 | 2.68 ± 1.71 | 2.56 ± 1.21 | 2.44 ± 1.12 | 2.55 ± 1.31 | 2.51 ± 1.18 |
CI | 2.26–2.66 | 2.33–2.86 | 2.35–2.80 | 2.25–2.67 | 2.35–2.72 | ||||
range | 0.40 | 0.53 | 0.45 | 0.38 | 0.37 | ||||
lower jaw | 117 | no | mean ± sd | 2.42 ± 1.15 | 2.56 ± 1.03 | 2.45 ± 0.93 | 2.43 ± 1.08 | 2.47 ± 1.05 | |
CI | 2.20–2.63 | 2.38–2.75 | 2.28–2.62 | 2.23–2.63 | 2.31–2.62 | ||||
range | 0.43 | 0.37 | 0.34 | 0.40 | 0.31 | ||||
lower jaw | 234 | p-value | 0.898 | 0.252 | 0.773 | 0.867 | 0.568 | ||
total | 470 | p-value | <0.0001 |
Distance CEJ—Alveolar Bone Crest (mm) | ||||||||
---|---|---|---|---|---|---|---|---|
Tooth Type | No of Teeth | RCF | Mesial | Distal | Lingual/ Palatal | Buccal | Pooled Values | |
molar | 82 | yes | mean ± sd | 2.56 ± 1.02 | 2.78 ± 1.16 | 2,62 ± 0.91 | 2.52 ± 0.89 | 2.62 ± 1.00 |
95% CI | 2.33–2.78 | 2.49–3.08 | 2.43–2.82 | 2.35–2.79 | 2.46–2.79 | |||
range | 0.45 | 0.59 | 0.39 | 0.44 | 0.33 | |||
molar | 82 | no | mean ± sd | 2.55 ± 1.08 | 2.71 ± 1.03 | 2.57 ± 0.96 | 2.48 ± 0.88 | 2.58 ± 1.02 |
CI | 2.31–2.79 | 2.49–2.92 | 2.36–2.78 | 2.28–2.67 | 2.41–2.75 | |||
range | 0.48 | 0.43 | 0.42 | 0.39 | 0.36 | |||
molar | p-value | 0.896 | 0.725 | 0.802 | 0.837 | 0.870 | ||
premolar | 101 | yes | mean ± sd | 2.56 ± 1.11 | 2.68 ± 1.55 | 2.96 ± 1.50 | 2.64 ± 1.32 | 2.71 ± 1.37 |
95% CI | 2.34–2.78 | 2.38–2.99 | 2.66–3.26 | 2.36–2.88 | 2.47–2.94 | |||
range | 0.44 | 0.61 | 0.60 | 0.42 | 0.47 | |||
premolar | 101 | no | mean ± sd | 2.51 ± 1.24 | 2.64 ± 1.42 | 2.87 ± 1.21 | 2.70 ± 1.23 | 2.68 ± 1.28 |
CI | 2.26–2.75 | 2.36–2.92 | 2.48–2.95 | 2.46–2.94 | 2.47–2.90 | |||
range | 0.49 | 0.56 | 0.47 | 0.48 | 0.43 | |||
premolar | p-value | 0.758 | 0.506 | 0.522 | 0.435 | 0.757 | ||
anterior | 52 | yes | mean ± sd | 2.55 ± 1.17 | 2.43 ± 1.16 | 2.68 ± 1.14 | 2.69 ± 1.13 | 2.59 ± 1.12 |
95% CI | 2.22–2.87 | 2.12–2.75 | 2.40–2.96 | 2.37–3.00 | 2.34–2.84 | |||
range | 0.55 | 0.63 | 0.56 | 0.63 | 0.50 | |||
anterior | 52 | no | mean ± sd | 2.52 ± 1.36 | 2.42 ± 1.11 | 2.71 ± 1.09 | 2.62 ± 1.15 | 2.57 ± 1.18 |
95% CI | 2.14–2.90 | 2.13–2.76 | 2.41–3.01 | 2.31–2.94 | 2.34–2.81 | |||
range | 0.76 | 0.63 | 0.60 | 0.63 | 0.47 | |||
anterior | p-value | 0.648 | 0.834 | 0.727 | 0.559 | 0.916 |
Pooled Age-Related Distances CEJ—Alveolar Bone Crest in the Matching Pairs of RCF and n-RCF Teeth | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | No of Teeth | Measuring Points | RCF | Mean [mm] | CI | Range | Pooled Mean | sd | Min | Max |
[95%] | ||||||||||
18–25 | 24 | 96 | yes | 2.153 | 1.85–2.57 | 0.72 | 2.15 a | 0.72 | 0.96 | 3.3 |
no | 2.147 | 1.83–2.36 | 0.53 | |||||||
26–30 | 28 | 112 | yes | 2.154 | 1.86–2.60 | 0.74 | 2.15 a | 0.73 | 1.13 | 5.32 |
no | 2.149 | 1.84–2.33 | 0.49 | |||||||
31–35 | 30 | 120 | yes | 2.170 | 1.90–2.41 | 0.51 | 2.17 a | 0.96 | 1.06 | 4.98 |
no | 2.165 | 1.80–2.48 | 0.68 | |||||||
36–40 | 48 | 192 | yes | 2.201 | 1.85–2.59 | 0.74 | 2.20 a | 1.12 | 0.82 | 6.57 |
no | 2.200 | 1.80–2.35 | 0.55 | |||||||
41–45 | 76 | 304 | yes | 2.605 | 2.28–2.90 | 0.62 | 2.60 b | 1.21 | 0.82 | 8.33 |
no | 2.597 | 2.12–2.72 | 0.60 | |||||||
46–50 | 66 | 264 | yes | 2.825 | 2.56–3.09 | 0.53 | 2.86 c | 1.59 | 0.82 | 8.58 |
no | 2.895 | 2.59–3.19 | 0.60 | |||||||
51–55 | 56 | 224 | yes | 2.957 | 2.50–3.41 | 0.91 | 2.87 c | 0.97 | 0.96 | 12.48 |
no | 2.782 | 2.35–3.20 | 0.85 | |||||||
56–60 | 52 | 208 | yes | 2.962 | 2.70–3.34 | 0.64 | 2.87 c | 0.92 | 0.96 | 5.93 |
no | 2.783 | 2.69–3.25 | 0.56 | |||||||
61–65 | 42 | 168 | yes | 2.783 | 2.51–2.95 | 0.44 | 2.88 c | 0.95 | 0.97 | 5.78 |
no | 2.887 | 2.60–3.28 | 0.68 | |||||||
66–70 | 30 | 120 | yes | 2.980 | 2.17–3.76 | 1.59 | 2.97 c | 1.43 | 0.98 | 9.6 |
no | 2.966 | 2.56–3.31 | 0.75 | |||||||
71 plus | 18 | 72 | yes | 2.935 | 2.00–3.87 | 1.87 | 2.92 c | 1.40 | 1.12 | 6.88 |
no | 2.901 | 1.89–3.91 | 2.02 | |||||||
total | ∑470 | ∑1880 | − | − | 2.63 (weighted mean) |
Gender | No of Teeth | Age | RCF | Mesial | Distal | Lingual/ Palatal | Buccal | Mean | Pooled Mean | |
---|---|---|---|---|---|---|---|---|---|---|
men | 94 | yes | mean ± sd | 2.68 ± 1.13 | 2.77 ± 1.50 | 2.81 ± 1.31 | 2.74 ± 1.25 | 2.74 ± 1.35 | 2.73 a ± 1.25 2.60–2.91 0.31 | |
95% CI | 2.33–2.82 | 2.56–3.23 | 2.65–3.24 | 2.38–2.91 | 2.53–3.01 | |||||
range | 0.49 | 0.67 | 0.59 | 0.53 | 0.48 | |||||
50.03 ± 10.56 | ||||||||||
men | 94 | no | mean ± sd | 2.67 ± 1.12 | 2.73 ± 1.38 | 2.76 ± 1.29 | 2.75 ± 1.18 | 2.72 ± 1.16 | ||
95% CI | 2.40–2.95 | 2.50–2.97 | 2.55–3.01 | 2.56–3.06 | 2.55–2.94 | |||||
range | 0.45 | 0.47 | 0.46 | 0.50 | 0.39 | |||||
men | p-value | 0.848 | 0.648 | 0.494 | 0.851 | 0.718 | ||||
female | 141 | yes | mean ± sd | 2.59 ± 1.41 | 2.62 ± 1.10 | 2.49 ± 1.03 | 2.49 ± 1.03 | 2.54 ± 1.18 | 2.53 b ± 1.17 2.43–2.63 0.20 | |
95% CI | 2.30–2.64 | 2.33–2.73 | 2.43–2.79 | 2.35–2.69 | 2.39–2.68 | |||||
range | 0.34 | 0.40 | 0.36 | 0.34 | 0.29 | |||||
50.39 ± 11.43 | ||||||||||
female | 141 | no | mean ± sd | 2.43 ± 1.17 | 2.56 ± 1.30 | 2.61 ± 1.10 | 2.45 ± 1.04 | 2.51 ± 1.16 | ||
95% CI | 2.24–2.62 | 2.37–2.79 | 2.47–2.82 | 2.29–2.63 | 2.38–2.68 | |||||
range | 0.38 | 0.42 | 0.35 | 0.34 | 0.30 | |||||
female | p-value | 0.519 | 0.566 | 0.85 | 0.629 | 0.802 | ||||
total | 235 | p-value | <0.00001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubrich, M.; Donnermeyer, D.; Schäfer, E.; Bürklein, S. Influence of Root Canal Fillings on Alveolar Bone Crest Level—An Observational Cross Sectional CBCT Analysis. Appl. Sci. 2021, 11, 8583. https://doi.org/10.3390/app11188583
Lubrich M, Donnermeyer D, Schäfer E, Bürklein S. Influence of Root Canal Fillings on Alveolar Bone Crest Level—An Observational Cross Sectional CBCT Analysis. Applied Sciences. 2021; 11(18):8583. https://doi.org/10.3390/app11188583
Chicago/Turabian StyleLubrich, Marco, David Donnermeyer, Edgar Schäfer, and Sebastian Bürklein. 2021. "Influence of Root Canal Fillings on Alveolar Bone Crest Level—An Observational Cross Sectional CBCT Analysis" Applied Sciences 11, no. 18: 8583. https://doi.org/10.3390/app11188583
APA StyleLubrich, M., Donnermeyer, D., Schäfer, E., & Bürklein, S. (2021). Influence of Root Canal Fillings on Alveolar Bone Crest Level—An Observational Cross Sectional CBCT Analysis. Applied Sciences, 11(18), 8583. https://doi.org/10.3390/app11188583