The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production and Analysis of Bagasse
2.3. Ice Cream Preparation and Freezing Process
2.4. Chemical Analysis of Ice Cream
2.5. Physical Properties of Ice Cream
2.6. Determination of Thermophysical Properties
2.7. Statistical Analysis
3. Results and Discussion
Chemical Analysis of Moldavian Dragonhead Bagasse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, C. The Science of Ice Cream; Unilever R&D Colworth/The Royal Society of Chemistry: Cambridge, UK, 2012. [Google Scholar]
- Wójtowicz, A.; Oniszczuk, A.; Oniszczuk, T.; Kocira, S.; Wojtunik, K.; Mitrus, M.; Kocira, A.; Widelski, J.; Skalicka-Woźniak, K. Application of Moldavian dragonhead (Dracocephalum moldavica L.) leaves addition as a functional component of nutritionally valuable corn snacks. J. Food Sci. Technol. 2017, 54, 3218–3229. [Google Scholar] [CrossRef]
- Oniszczuk, T.; Kasprzak-Drozd, K.; Olech, M.; Wójtowicz, A.; Nowak, R.; Rusinek, R.; Szponar, J.; Combrzyński, M.; Oniszczuk, A. The impact of formulation on the content of phenolic compounds in snacks enriched with Dracocephalum moldavica L. seeds: Introduction to receiving a new functional food product. Molecules 2021, 26, 1245. [Google Scholar] [CrossRef]
- Mafakheri, S.; Omidbaigi, R.; Sefidkon, F.; Rejali, F. Effect of biofertilizers, vermicompost, Azotobacter and biophosphate on the growth, nutrient uptake and essential oil content of dragonhead (Dracocephalum moldavica L.). Acta Hortic. 2013, 27, 596–605. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El-Baroty, G.S. Chemical and biological evaluation of the essential oil of Egyptian moldavian balm (Dracocephalum moldavica L). Int. J. Integr. Biol. 2008, 3, 202–213. Available online: http://ijib.classicrus.com/trns/2953501629222517.pdf (accessed on 13 August 2021).
- Dastmalchi, K.; Dorman, D.H.J.; Laakso, I.; Hiltunen, R. Chemical composition and antioxidative activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT—Food Sci. Technol. 2007, 40, 239–248. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Oniszczuk, T.; Matwijczuk, A.; Chruściel, E.; Kocira, A.; Niemczynowicz, A.; Wójtowicz, A.; Combrzyński, M.; Wiacek, D. Use of FTIR spectroscopy and chemometrics with respect to storage conditions of Moldavian Dragonhead Oil. Sustainability 2019, 11, 6414. [Google Scholar] [CrossRef] [Green Version]
- Oniszczuk, T.; Matwijczuk, A.; Matwijczuk, A.; Kocira, S.; Niemczynowicz, A.; Combrzyński, M.; Wójtowicz, A.; Kuboń, M.; Kusz, A.; Oniszczuk, A. Impact of storage temperature and time on Moldavian dragonhead oil—Spectroscopic and chemometric analysis. Open Chem. 2019, 17, 609–620. [Google Scholar] [CrossRef]
- Domokos, J.; Peredi, J.; Halasz-Zelnik, K. Characterization of seed oils of dragonhead (Dracocephalum moldavica L.) and catnip (Nepeta cataria var. citriodora Balb.). Ind. Crops Prod. 1994, 3, 91–94. [Google Scholar] [CrossRef]
- Dziki, D.; Miś, A.; Gładyszewska, B.; Laskowski, J.; Kwiatkowski, S.; Gawlik-Dziki, U. Physicochemical and grinding characteristics of dragonhead seeds. Int. Agrophysics 2013, 27, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Jin, H.Z.; Fu, J.J.; Qin, J.J.; Hu, X.J.; Liu, J.H.; Yan, L.; Chen, M.; Zhang, W.D. Chemical constituents of plants from the genus Dracocephalum. Chem. Biodivers. 2010, 7, 1911–1929. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Guo, X.; Lou, H.; Ren, D. A new flavonoid glycoside and other constituents from Dracocephalum moldavica. Nat. Prod. Res. 2013, 27, 201–207. [Google Scholar] [CrossRef]
- Jiang, J.; Yuan, X.; Wang, T.; Chen, H.; Zhao, H.; Yan, X.; Wang, Z.; Sun, X.; Zheng, Q. Antioxidative and cardioprotective effects of total flavonoids extracted from dracocephalum moldavica L. against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart. Cardiovasc. Toxicol. 2014, 14, 74–82. [Google Scholar] [CrossRef]
- Povilaityté, V.; Cuvelier, M.E.; Berset, C. Antioxidant properties of moldavian dragonhead (Dracocephalum moldavica L.). J. Food Lipids 2001, 8, 45–64. [Google Scholar] [CrossRef]
- Dastmalchi, K.; Dorman, D.H.J.; Koşar, M.; Hiltunen, R. Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT—Food Sci. Technol. 2007, 40, 1655–1663. [Google Scholar] [CrossRef]
- El-Baky, H.H.A.; El-Baroty, G.S. Chemical and biological evaluation of the essential oil of Egyptian Moldavian balm. Int. J. Essent. Oil Ther. 2008, 2, 78–81. [Google Scholar]
- Sonboli, A.; Mojarrad, M.; Gholipour, A.; Ebrahimi, S.N.; Arman, M. Biological activity and composition of the essential oil of Dracocephalum moldavica L. grown in Iran. Nat. Prod. Commun. 2008, 3, 1547–1550. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, A.; Shakeri, A.; Tayarani-Najaran, Z.; Kharbach, M.; Segers, K.; Heyden, Y.V.; Taghizadeh, S.F.; Rahmani, H.; Asili, J. UPLC–PDA-ESI–QTOF–MS/MS and GC-MS analysis of Iranian Dracocephalum moldavica L. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kakasy, A.Z.; Lemberkovics, É.; Simándi, B.; Lelik, L.; Héthelyi, É.; Antal, I.; Szöke, É. Comparative study of traditional essential oil and supercritical fluid extracts of Moldavian dragonhead (Dracocephalum moldavica L.). Flavour Fragr. J. 2006, 21, 598–603. [Google Scholar] [CrossRef]
- Frąc, M.; Oszust, K.; Kocira, A.; Kocira, S. Molecular Identification of Fungi Isolated from Dracocephalum Moldavica, L. Seeds. Agric. Agric. Sci. Proced. 2015, 7, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Dziki, D.; Cacak-Pietrzak, G.; Gawlik-Dziki, U.; Sułek, A.; Kocira, S.; Biernacka, B. Effect of Moldavian dragonhead (Dracocephalum moldavica L.) leaves on the baking properties of wheat flour and quality of bread. CYTA—J. Food 2019, 17, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Oniszczuk, T.; Wójtowicz, A.; Combrzyński, M.; Mitrus, M.; Kupryaniuk, K.; Matysiak, A.; Kocira, S.; Oniszczuk, A. Selected properties of snacks extruded at various screw speeds supplemented with Moldavian dragonhead seed addition. Int. Agrophysics 2019, 33, 363–371. [Google Scholar] [CrossRef]
- Zarzycki, P.; Teterycz, D.; Wirkijowska, A.; Kozłowicz, K.; Stasiak, D.M. Use of moldavian dragonhead seeds residue for pasta production. LWT—Food Sci. Technol. 2021, 143, 111099. [Google Scholar] [CrossRef]
- Oniszczuk, T.; Wójtowicz, A.; Kocira, S.; Żelizko, K.; Oniszczuk, A.; Dib, A. The Use of Moldavian Dragonhead Bagasse Waste in Extruded Products. In Proceedings of the IX International Scientific Symposium Farm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017. [Google Scholar] [CrossRef]
- ISO Standard 12966-2:2017. Animal and Vegetable Fats and Oils Gas Chromatography of Fatty acid Methyl esters—Part 2: Preparation of Methyl Esters of Fatty Acids; ISO International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; Association of Analytical Communities: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Rahman, M.S.; Guizani, N.; Al-Khaseibi, M.; Al-Hinai, S.A.; Al-Maskri, S.S.; Al-Ramhami, K. Analysis of cooling curve to determine the end point of freezing. Food Hydrocol. 2002, 16, 653–659. [Google Scholar] [CrossRef]
- Güven, M.; Karaca, O.B. The effect of varying sugar content and fruit concentration on the physical properties of vanilla and fruit ice-cream-type frozen yogurts. Int. J. Dairy Technol. 2002, 55, 27–31. [Google Scholar] [CrossRef]
- Tiwari, A.; Sharma, H.K.; Kumar, N.; Kaur, M. The effect of inulin as a fat replacer on the quality of low-fat ice cream. Int. J. Dairy Technol. 2015, 68, 374–380. [Google Scholar] [CrossRef]
- Kozłowicz, K.; Góral, D.; Kluza, F.; Góral, M.; Andrejko, D. Experimental determination of thermophysical properties by line heat pulse method. J. Food Meas. Charact. 2018, 12, 2524–2534. [Google Scholar] [CrossRef]
- Abdel-Reheem, M.A.; Bhella, R.; Hilderbrand, D. Linolenic acid accumulation in Dracocephalum moldavica L. Lipids 2008, 43, 749–755. [Google Scholar]
- Stuchlik, M.; Žak, S. Vegetable lipids as component of functional foods. Biomed. Pap. 2002, 146, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Hanczakowski, P.; Szymczyk, B.; Kwiatkowski, S.; Wolski, T. Composition and nutritive value of protein of Moldavian balm seeds (Dracocephalum moldavica L.). Rocz. Nauk Zoot. 2009, 36, 55–61. [Google Scholar]
- Kamińska-Dwórznicka, A.; Janczewska-Dupczyk, A.; Kot, A.; Łaba, S.; Samborska, K. The impact of ι- and κ-carrageenan addition on freezing process and ice crystals structure of strawberry sorbet frozen by various methods. J. Food Sci. 2020, 85, 50–56. [Google Scholar] [CrossRef]
- Goff, H.D.; Hartel, R.W. Ice Cream; Springer Science: New York, NY, USA, 2013. [Google Scholar]
- Ostróżka, K.; Wichrowska, D. Effect of sugar substitutes on aeration degree and meltability of medium-hard dairy ice cream. Żywność. Nauka. Technol. Jakość. 2020, 27, 52–65. [Google Scholar] [CrossRef]
- Karaca, O.B.; Güven, M.; Yasar, K.; Kaya, S.; Kahyaoglu, T. The functional, rheological and sensory characteristics of ice creams with various fat replacers. Int. J. Dairy Technol. 2009, 62, 93–99. [Google Scholar] [CrossRef]
- Dervisoglu, M. Influence of hazelnut flour and skin addition on the physical, chemical and sensory properties of vanilia ice cream. Int. J. Food Sci. Technol. 2006, 41, 657–661. [Google Scholar] [CrossRef]
- Qayyum, A.; Huma, N.; Sameen, A.; Siddiq, A.; Munir, M. Impact of watermelon seed flour on the physico-chemical and sensory characteristics of ice cream. J. Food Process. Preserv. 2017, 41, e13297. [Google Scholar] [CrossRef]
- Muse, M.R.; Hartel, R.W. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef]
- Rahim, N.A.; Sarbon, N.M. Acacia honey lime ice cream: Physicochemical and sensory characterization as effected by different hydrocolloids. Int. Food Res. J. 2019, 26, 883–891. Available online: http://www.ifrj.upm.edu.my/26%20%202019/18%20-%20IFRJ17773.R1-Final.pdf (accessed on 13 August 2021).
- Su-Jung, Y.; Ji-Han, K.; Go-Eun, H.; Woojoon, P.; Soo-Ki, K.; Han-Geuk, S.; Chi-Ho, L. Physical and sensory properties of ice cream containing fermented pepper power. Korean J. Food Sci. An. 2017, 37, 38–43. [Google Scholar]
- Javidi, F.; Razavi, S.M.A. Rheological, physical and sensory characteristocs of light ice cream as affected by selected fat replacers. J. Food Measur. Charact. 2018, 12, 1872–1884. [Google Scholar] [CrossRef]
- Akalin, A.S.; Karagözlü, C.; Ünal, G. Rheological Properties of Reduced-Fat and Low-Fat Ice Cream Containing Whey Protein Isolate and Inulin. Eur. Food Res. Technol. 2008, 227, 889–895. [Google Scholar] [CrossRef]
- Aime, S.D.; Arntfield, L.; Malcolmson, L.; Ryland, D. Textural analysis of fat reduced vanilla ice cream products. Food Res. Int. 2001, 34, 237–246. [Google Scholar] [CrossRef]
- El-Nagar, G.; Clowes, G.; Tudorica, C.M.; Kuri, V.; Brennan, C.S. Rheological quality and stability of yog-ice cream with added inulin. Int. J. Dairy Technol. 2002, 55, 89–93. [Google Scholar] [CrossRef]
- Tello, H.A.; Peralta, J.M.; Rubiolo, A.C.; Zorrilla, S.E. Prediction of the freezing point of multicomponent liquid refrigerant solutions. J. Food Eng. 2011, 104, 143–148. [Google Scholar] [CrossRef]
- Kozłowicz, K.; Góral-Kowalczyk, M.; Góral, D.; Pankiewicz, U.; Bronowicka-Mielniczuk, U. Effect of ice cream storage on the physicochemical properties and survival of probiotic bacteria supplemented with zinc ions. LWT–Food Sci. Technol. 2019, 116, 108562. [Google Scholar] [CrossRef]
- Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D. Magnesium enriched lactic acid bacteria as a carrier for probiotic ice cream production. Food Chem. 2018, 15, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.K.; Karkhele, P.D.; Sandey, K.K.; Sahu, C.; Sinha, G. Effect of incorporation of ginger juice in various rates on the freezing and thermal properties of ice cream. Asian J. Dairy Food Res. 2015, 34, 92–97. [Google Scholar] [CrossRef]
Ingredients | Composition (g/100 g, w/w) | ||||
---|---|---|---|---|---|
LW1.0 | LW1.5 | LW2.0 | LW2.5 | LW3.0 | |
Rice drink | 63.0 | 63.0 | 63.0 | 63.0 | 63.0 |
Hemp protein | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 |
Maltodextrin | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Honey | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
MDB | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
Inulin | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 |
Emulsifier | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Stabilizer | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fatty Acid | Content [%] |
---|---|
Protein | 23.97 ± 0.221 |
Fat | 5.43 ± 0.120 |
Palmitic acid 16:0 | 5.83 ± 0.843 |
Stearic acid 18:0 | 2.05 ± 0.581 |
Oleic acid (n-9) 18:1 | 9.86 ± 0.214 |
Linoleic acid (n-6) 18:2 | 20.39 ± 0.672 |
Linolenic acid (n-3) 18:3 | 62.21 ± 0.810 |
Properties | LW1.0 | LW1.5 | LW2.0 | LW2.5 | LW3.0 |
---|---|---|---|---|---|
Dry matter [g (100 g)−1] | 40.56 ± 0.031 a | 40.56 ± 0.520 a | 40.76 ± 0.331 a | 41.25 ± 0.570 a | 41.02 ± 0.180 a |
Fat [g (100 g)−1] | 2.19 ± 0.020 a | 2.20 ± 0.013 a | 4.08 ± 0.021 b | 4.58 ± 0.021 c | 5.33 ± 0.010 d |
Protein [g (100 g)−1] | 10.16 ± 0.013 b | 10.66 ± 0.321 c | 11.40 ± 0.042 a | 11.66 ± 0.032 a | 12.07 ± 0.021 d |
Ash [g (100 g)−1] | 1.97 ± 0.124 ab | 1.73 ± 0.024 c | 1.95 ± 0.044 ab | 1.85 ± 0.022 ac | 2.06 ± 0.021 b |
pH | 5.88 ± 0.012 a | 5.80 ± 0.011 b | 5.86 ± 0.013 ab | 5.88 ±0.043 a | 5.84 ± 0.024 ab |
Properties | LW1.0 | LW1.5 | LW2.0 | LW2.5 | LW3.0 |
---|---|---|---|---|---|
Palmitic acid [%] | 0.05 ± 0.001 a | 0.08 ± 0.010 b | 0.11 ± 0.010 c | 0.14 ± 0.010 d | 0.16 ± 0.010 e |
Stearic acid [%] | 0.02 ± 0.010 a | 0.03 ± 0.013 ab | 0.04 ± 0.014 ab | 0.05 ± 0.013 ab | 0.06 ± 0.021 b |
Oleic acid [%] | 0.10 ± 0.001 a | 0.15 ± 0.000 b | 0.20 ± 0.001 c | 0.24 ± 0.011 d | 0.30 ± 0.011 e |
Linoleic acid [%] | 0.21 ± 0.011 a | 0.31 ± 0.011 b | 0.41 ± 0.010 c | 0.51 ± 0.022 d | 0.61 ± 0.020 e |
Linolenic acid [%] | 0.62 ± 0.01 a | 0.93 ± 0.01 b | 1.24 ± 0.02 c | 1.56 ± 0.08 d | 1.87 ± 0.02 e |
Properties | LW1.0 | LW1.5 | LW2.0 | LW2.5 | LW3.0 |
---|---|---|---|---|---|
First drop [min] | 8.65 ± 0.812 c | 11.19 ± 1.021 a | 11.53 ± 0.491 a | 12.20 ± 0.954 ab | 13.94 ± 0.961 b |
Complete melting time [min] | 34.74 ± 0.672 a | 35.56 ± 0.391 a | 35.83 ± 0.474 ab | 37.35 ± 0.744 bc | 38.00 ± 0.620 c |
Hardness [N] | 9.25 ± 0.173 b | 11.60 ± 1.232 c | 15.77 ± 0.901 a | 15.74 ± 0.463 a | 28.76 ± 0.681 d |
Adhesiveness [N·s] | −15.72 ± 0.732 e | −21.63 ± 0.773 d | −27.46 ± 0.502 c | −32.89 ± 1.221 b | −44.47 ± 1.420 a |
Properties | LW1.0 | LW1.5 | LW2.0 | LW2.5 | LW3.0 |
---|---|---|---|---|---|
Cryoscopic temperature Tcr [°C] | −3.50 ± 0.000 a | −3.50 ± 0.000 a | −3.50 ± 0.000 a | −4.00 ± 0.000 b | −4.00 ± 0.000 b |
Thermal conductivity λ [W·(m·K)−1] | 1.10 ± 0.021 c | 1.08 ± 0.014 abc | 1.09 ± 0.013 bc | 1.06 ± 0.011 a | 1.07 ± 0.014 ab |
Heat capacity C [MJ·(m3·K)−1] | 2.72 ± 0.101 d | 2.57 ± 0.042 a | 2.55 ± 0.051 a | 2.40 ± 0.081 c | 2.17 ± 0.032 b |
Thermal diffusivity a [mm2·s−1] | 0.40 ± 0.012 a | 0.41 ± 0.051 a | 0.42 ± 0.001 a | 0.44 ± 0.010 a | 0.50 ± 0.001 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowicz, K.; Nazarewicz, S.; Różyło, R.; Nastaj, M.; Parafiniuk, S.; Szmigielski, M.; Bieńczak, A.; Kozłowicz, N. The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream. Appl. Sci. 2021, 11, 8598. https://doi.org/10.3390/app11188598
Kozłowicz K, Nazarewicz S, Różyło R, Nastaj M, Parafiniuk S, Szmigielski M, Bieńczak A, Kozłowicz N. The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream. Applied Sciences. 2021; 11(18):8598. https://doi.org/10.3390/app11188598
Chicago/Turabian StyleKozłowicz, Katarzyna, Sybilla Nazarewicz, Renata Różyło, Maciej Nastaj, Stanisław Parafiniuk, Marek Szmigielski, Agata Bieńczak, and Natalia Kozłowicz. 2021. "The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream" Applied Sciences 11, no. 18: 8598. https://doi.org/10.3390/app11188598
APA StyleKozłowicz, K., Nazarewicz, S., Różyło, R., Nastaj, M., Parafiniuk, S., Szmigielski, M., Bieńczak, A., & Kozłowicz, N. (2021). The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream. Applied Sciences, 11(18), 8598. https://doi.org/10.3390/app11188598