Scheduling of Single-Arm Cluster Tools with Residency Time Constraints and Chamber Cleaning Operations
Abstract
:1. Introduction
2. Virtual Wafer-Based Method
2.1. Robot Tasks
2.2. One-Wafer Cyclic Schedule
2.3. Approach to Deal with Chamber Cleaning Requirements
3. Approximation Solution Algorithm
3.1. Solution Encoding and Modification
Algorithm 1. Updating xj based on π for the case with di = 1 | |||||
Input: | π; | ||||
Output: | xj, 1 ≤ j ≤ (mi + ki) × ni; | ||||
(1) | For j = 1 to q | ||||
(2) | xj = x′j; | ||||
(3) | If ki = q | ||||
(4) | For j = q + 1 to ni × q | ||||
(5) | For g = 1 to q | ||||
(6) | If (j − g)/q is an integer | ||||
(7) | xj = xg; | ||||
(8) | If mi + 1 < ki | ||||
(9) | For g = 1 to ni | ||||
(10) | For h = 0 to mi − 1 | ||||
(11) | = ; |
Algorithm 2: Updating xj based on π for the case with di = 2 | |||
Input: | π; | ||
Output: | xj, 1 ≤ j ≤ (2ki + 1) × ni; | ||
(1)–(7) | Same as the ones in Algorithm 1, respectively | ||
(8) | For g = 1 to ni | ||
(9) | For h = 0 to ki − 1 | ||
(10) | = ; | ||
(11) | = xg; |
Algorithm 3: Individual modification for the case with di = 1 and mi + 1 ≥ ki | ||||||
(1) | For g = 1 to ni | |||||
(2) | R = 0; | |||||
(3) | For h = 0 to ki−1 | |||||
(4) | If = 0 | |||||
(5) | R = R + 1; | |||||
(6) | Else If = 1 | |||||
(7) | R = 0; | |||||
(8) | If R = ki | |||||
(9) | j = random [0, ki−1]; | |||||
(10) | = 1; | |||||
(11) | For f = 1 to q | |||||
(12) | If (g + j×ni − f)/q is a non-negative integer | |||||
(13) | xf = 1; | |||||
(14) | xf′ = xf; | |||||
(15) | Perform one of Algorithms 1 and 2 for Step s; |
Algorithm 4: Individual modification for the case with di = 1 and mi + 1 < ki | ||||||
(1) | For g = 1 to ni | |||||
(2) | R = 0; | |||||
(3) | For h = 0 to ki−1 + mi | |||||
(4) | If = 0 | |||||
(5) | R = R + 1; | |||||
(6) | Else If = 1 | |||||
(7) | R = 0; | |||||
(8) | If R = mi + 1 | |||||
(9) | = 1; | |||||
(10) | R = 0; | |||||
(11) | For f = 1 to q | |||||
(12) | If (g + h×ni − f)/q is a non-negative integer | |||||
(13) | xf = 1; | |||||
(14) | xf′ = xf; | |||||
(15) | Perform one of Algorithms 1 and 2 for Step s; |
Algorithm 5: Individual modification for the case with di = 2 | ||||||
(1) | For g = 1 to ni | |||||
(2) | R = 0; | |||||
(3) | V = 0; | |||||
(4) | V0 = 0; | |||||
(5) | For h = 0 to 2ki | |||||
(6) | If = 0 | |||||
(7) | R = R + 1; | |||||
(8) | V = max(V−1, 0); | |||||
(9) | If R > mi | |||||
(10) | = 1; | |||||
(11) | R = max(R−1, 0); | |||||
(12) | For f = 1 to q | |||||
(13) | If (g + h×ni − f)/q is a non-negative integer | |||||
(14) | xf = 1; | |||||
(15) | xf′ = xf; | |||||
(16) | Perform one of Algorithms 1 and 2 for Step s; | |||||
(17) | If = 1 | |||||
(18) | V = V + 1; | |||||
(19) | If V = 2 | |||||
(20) | R = 0; | |||||
(21) | V = 0; | |||||
(22) | V0 = 1; | |||||
(23) | If V0 = 0 and = 0; | |||||
(24) | = 1; | |||||
(25) | For f = 1 to q | |||||
(26) | If (g + (ki−1)×ni − f)/q is a non-negative integer | |||||
(27) | xf = 1; | |||||
(28) | xf′ = xf; | |||||
(29) | Perform one of Algorithms 1 and 2 for Step s; | |||||
(30) | If V0 = 0 and = 0; | |||||
(31) | = 1; | |||||
(32) | For f = 1 to q | |||||
(33) | If (g + ki×ni − f)/q is a non-negative integer | |||||
(34) | xf = 1; | |||||
(35) | xf′ = xf; | |||||
(36) | Perform one of Algorithms 1 and 2 for Step s; |
3.2. Selection, Crossover, and Mutation Mechanism
3.3. Procedure of Designed GA
- Step 1
- Initialization: Randomly generate a population with γ individuals;
- Step 2
- Individual Modification:
- (1)
- Update xj, j > 0, for each individual by one of Algorithms 1 and 2; and
- (2)
- Modify each individual by one of Algorithms 3–5.
- Step 3
- Fitness value calculation: For each individual, its fitness value is obtained by (7).
- Step 4
- Selection: The n-tournament selection is performed for γ times such that γ selected individuals form a new population.
- Step 5
- Crossover (Obtain a new generation):
- (1)
- γ individuals of the new population obtained by Step 4 are divided into γ/2 groups, and
- (2)
- For each group, if Pc > rand[0,1], a single-point crossover operation is performed to generate two new individuals which are put in the new generation, and otherwise the two individuals in the group are directly put into the new generation.
- Step 6
- Mutation: For each individual, if Pm > rand[0,1], a single-point mutation operation is performed.
- Step 7
- Same as Step 2.
- Step 8
- Same as Step 3.
- Step 9
- If the termination condition is met, then output an individual with highest fitness value in the current population, else go to Step 4.
4. Experiments
4.1. Parameter Setting
4.2. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, T.-E.; Lee, H.-Y.; Shin, Y.-H. Workload balancing and scheduling of a single-armed cluster tool. In Proceedings of the 5th APIEMS Conference, Gold Coast, Australia, 12–15 December 2004; pp. 1–15. [Google Scholar]
- Venkatesh, S.; Davenport, R.; Foxhoven, P.; Nulman, J. A steady state throughput analysis of cluster tools: Dual-blade versus single-blade robots. IEEE Trans. Semicond. Manuf. 1997, 10, 418–424. [Google Scholar] [CrossRef]
- Rostami, S.; Hamidzadeh, B.; Camporese, D. An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints. IEEE Trans. Robot. Autom. 2001, 17, 609–618. [Google Scholar] [CrossRef]
- Lee, T.-E.; Park, S.-H. An extended event graph with negative places and tokens for timed window constraints. IEEE Trans. Autom. Sci. Eng. 2005, 2, 319–332. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, T.-E.; Lee, H.-Y.; Park, D.-B. Scheduling analysis of timed-constrained dual-armed cluster tools. IEEE Trans. Semicond. Manuf. 2003, 16, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.Q.; Pan, C.R.; Qiao, Y.; Wu, N.Q.; Chen, M.X.; Hsieh, P.H. Reducing wafer delay time by robot idle time regulation for single-arm cluster tools. IEEE Trans. Autom. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Jacob, R.; Amari, S. Output feedback control of discrete processes under time constraint: Application to cluster tools. Int. J. Comput. Integr. Manuf. 2017, 30, 880–894. [Google Scholar] [CrossRef]
- Kim, C.; Lee, T.-E. Feedback Control of Cluster Tools for Regulating Wafer Delays. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1189–1199. [Google Scholar] [CrossRef]
- Lim, Y.; Yu, T.S.; Lee, T.E. A new class of sequences without interferences for cluster tools with tight wafer delay constraints. IEEE Trans. Autom. Sci. Eng. 2019, 16, 392–405. [Google Scholar] [CrossRef]
- Roh, D.H.; Lee, T.G.; Lee, T.E. K-cyclic schedules and the worst-case wafer delay in a dual-armed cluster tool. IEEE Trans. Semicond. Manuf. 2019, 32, 236–249. [Google Scholar] [CrossRef]
- Lim, Y.; Yu, T.S.; Lee, T.E. Adaptive scheduling of cluster tools with wafer delay constraints and process time variation. IEEE Trans. Autom. Sci. Eng. 2020, 17, 375–388. [Google Scholar] [CrossRef]
- Wang, J.; Pan, C.; Hu, H.; Li, L.; Zhou, Y. A cyclic scheduling approach to single-arm cluster tools with multiple wafer types and residency time constraints. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1373–1386. [Google Scholar] [CrossRef]
- Ko, S.G.; Yu, T.S.; Lee, T.E. Wafer delay analysis and workload balancing of parallel chambers for dual-armed cluster tools with multiple wafer types. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1516–1526. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Pan, C.; Li, L.; Zhou, Y.; Li, L. Scheduling dual-arm cluster tools with multiple wafer types and residency time constraints. IEEE/CAA J. Autom. Sin. 2020, 7, 776–789. [Google Scholar] [CrossRef]
- Wu, N.Q.; Chu, C.B.; Chu, F.; Zhou, M.C. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints. IEEE Trans. Semicond. Manuf. 2008, 21, 224–237. [Google Scholar] [CrossRef]
- Wu, N.Q.; Zhou, M.C. A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer residency time constraint based on steady schedule analysis. IEEE Trans. Autom. Sci. Eng. 2010, 7, 303–315. [Google Scholar]
- Pan, C.R.; Qiao, Y.; Wu, N.Q.; Zhou, M.C. A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 805–818. [Google Scholar]
- Qiao, Y.; Wu, N.Q.; Zhou, M.C. Petri net modeling and wafer sojourn time analysis of single-arm cluster tools with residency time constraint and activity time variation. IEEE Trans. Semicond. Manuf. 2012, 25, 432–446. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.Q.; Zhou, M.C. Real-time scheduling of single-arm cluster tools subject to residency time constraints and bounded activity time variation. IEEE Trans. Autom. Sci. Eng. 2012, 9, 564–577. [Google Scholar] [CrossRef]
- Wu, N.Q.; Zhou, M.C. Modeling, analysis and control of dual-arm cluster tools with residency time constraint and activity time variation based on Petri nets. IEEE Trans. Autom. Sci. Eng. 2012, 9, 446–454. [Google Scholar]
- Wu, N.Q.; Zhou, M.C. Schedulability analysis and optimal scheduling of dual-arm cluster tools with residency time constraint and activity time variation. IEEE Trans. Autom. Sci. Eng. 2012, 9, 203–209. [Google Scholar]
- Yu, T.S.; Kim, H.J.; Lee, T.E. Scheduling single-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng. 2018, 15, 705–716. [Google Scholar] [CrossRef]
- Yu, T.S.; Lee, T.E. Scheduling dual-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng. 2019, 16, 218–228. [Google Scholar] [CrossRef]
- Abderrabi, F.; Godichaud, M.; Yalaoui, A.; Yalaoui, F.; Amodeo, L.; Qerimi, A.; Thivet, E. Flexible job shop scheduling problem with sequence dependent setup time and job splitting: Hospital catering case study. Appl. Sci. 2021, 11, 1504. [Google Scholar] [CrossRef]
- Park, J.-S.; Ng, H.-Y.; Chua, T.-J.; Ng, Y.-T.; Kim, J.-W. Unified genetic algorithm approach for solving flexible job-shop scheduling problem. Appl. Sci. 2021, 11, 6454. [Google Scholar] [CrossRef]
- Zou, P.; Rajora, M.; Liang, S.Y. Multimodal optimization of permutation flow-shop scheduling problems using a clustering-genetic-algorithm-based approach. Appl. Sci. 2021, 11, 3388. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.Q.; Pan, C.R.; Zhou, M.C. How to respond to process module failure in residency time-constrained single-arm cluster tools. IEEE Trans. Semicond. Manuf. 2014, 27, 462–474. [Google Scholar] [CrossRef]
- Qiao, Y.; Pan, C.R.; Wu, N.Q.; Zhou, M.C. Response policies to process module failure in single-arm cluster tools subject to wafer residency time constraints. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1125–1139. [Google Scholar] [CrossRef]
1: | n = 2; Γ1 = (1, 1); Γ2 = (3, 2); Γ3 = (1, 1); | 2: | n = 2; Γ1 = (1, 2); Γ2 = (6, 4); Γ3 = (1, 1); | 3: | n = 2; Γ1 = (2, 2); Γ2 = (8, 8); Γ3 = (1, 1); | 4: | n = 2; Γ1 = (3, 2); Γ2 = (8, 10); Γ3 = (1, 1); |
5: | n = 2; Γ1 = (1, 3); Γ2 = (7, 8); Γ3 = (1, 1); | 6: | n = 2; Γ1 = (1, 4); Γ2 = (5, 10); Γ3 = (1, 1); | 7: | n = 3; Γ1 = (1, 2, 2); Γ2 = (5, 5, 7); Γ3 = (1, 1, 1); | 8: | n = 3; Γ1 = (1, 1, 2); Γ2 = (7, 6, 9); Γ3 = (1, 1, 1); |
9: | n = 3; Γ1 = (1, 2, 3); Γ2 = (7, 8, 7); Γ3 = (1, 1, 1); | 10: | n = 4; Γ1 = (1, 2, 2, 1); Γ2 = (6, 6, 8, 8); Γ3 = (1, 1, 1, 1); | 11: | n = 2; Γ1 = (1, 1); Γ2 = (6, 8); Γ3 = (1, 2); | 12: | n = 2; Γ1 = (2, 1); Γ2 = (5, 5); Γ3 = (2, 1); |
13: | n = 2; Γ1 = (2, 2); Γ2 = (8, 9); Γ3 = (2, 2); | 14: | n = 2; Γ1 = (3, 2); Γ2 = (8, 10); Γ3 = (2, 2); | 15: | n = 2; Γ1 = (1, 3); Γ2 = (7, 10); Γ3 = (1, 2); | 16: | n = 2; Γ1 = (1, 4); Γ2 = (5, 10); Γ3 = (1, 2); |
17: | n = 3; Γ1 = (1, 2, 2); Γ2 = (5, 7, 8); Γ3 = (1, 2, 2); | 18: | n = 3; Γ1 = (3, 1, 2); Γ2 = (10, 8, 6); Γ3 = (2, 1, 2); | 19: | n = 3; Γ1 = (1, 2, 3); Γ2 = (7, 8, 7); Γ3 = (1, 2, 1); | 20: | n = 4; Γ1 = (1, 3, 2, 2); Γ2 = (4, 7, 5, 5); Γ3 = (1, 1, 1, 2); |
Population Size | n-Tournament | Pc | Pm | No. | TIi, i ∈ {1, 2, …, 45} | φi, i ∈ {1, 2, …, 45} |
---|---|---|---|---|---|---|
10 | 5 | 0.1 | 0.05 | 1 | 441 | 44.35 |
0.15 | 2 | 583 | 30.35 | |||
0.25 | 3 | 734 | 21.50 | |||
0.3 | 0.05 | 4 | 452 | 43.30 | ||
0.15 | 5 | 604 | 30.20 | |||
0.25 | 6 | 732 | 19.85 | |||
0.5 | 0.05 | 7 | 447 | 42.55 | ||
0.15 | 8 | 627 | 29.10 | |||
0.25 | 9 | 741 | 18.80 | |||
20 | 5 | 0.1 | 0.05 | 10 | 513 | 39.60 |
0.15 | 11 | 682 | 24.70 | |||
0.25 | 12 | 834 | 12.40 | |||
0.3 | 0.05 | 13 | 531 | 36.55 | ||
0.15 | 14 | 721 | 21.60 | |||
0.25 | 15 | 833 | 12.25 | |||
0.5 | 0.05 | 16 | 534 | 35.75 | ||
0.15 | 17 | 721 | 20.40 | |||
0.25 | 18 | 872 | 9.25 | |||
10 | 0.1 | 0.05 | 19 | 525 | 39.55 | |
0.15 | 20 | 667 | 22.15 | |||
0.25 | 21 | 815 | 12.40 | |||
0.3 | 0.05 | 22 | 513 | 38.85 | ||
0.15 | 23 | 719 | 24.95 | |||
0.25 | 24 | 850 | 10.10 | |||
0.5 | 0.05 | 25 | 548 | 36.40 | ||
0.15 | 26 | 713 | 22.40 | |||
0.25 | 27 | 890 | 8.30 | |||
30 | 5 | 0.1 | 0.05 | 28 | 558 | 34.30 |
0.15 | 29 | 772 | 19.90 | |||
0.25 | 30 | 909 | 6.85 | |||
0.3 | 0.05 | 31 | 576 | 32.40 | ||
0.15 | 32 | 770 | 14.65 | |||
0.25 | 33 | 931 | 4.95 | |||
0.5 | 0.05 | 34 | 596 | 28.85 | ||
0.15 | 35 | 763 | 13.70 | |||
0.25 | 36 | 970 | 6 | |||
10 | 0.1 | 0.05 | 37 | 552 | 32.90 | |
0.15 | 38 | 759 | 19.55 | |||
0.25 | 39 | 906 | 7.45 | |||
0.3 | 0.05 | 40 | 587 | 32 | ||
0.15 | 41 | 746 | 17.45 | |||
0.25 | 42 | 936 | 6.3 | |||
0.5 | 0.05 | 43 | 581 | 31.70 | ||
0.15 | 44 | 816 | 14.65 | |||
0.25 | 45 | 963 | 3.8 |
Case No. | UB | GA | ||
---|---|---|---|---|
Results | Running Time | GAP-G-U | ||
1 | 0.6667 | 0.6667 | 17.71 s | 0 |
2 | 0.8000 | 0.8000 | 28.30 s | 0 |
3 | 0.8889 | 0.8889 | 27.68 s | 0 |
4 | 0.8889 | 0.8889 | 54.97 s | 0 |
5 | 0.8750 | 0.8750 | 51.38 s | 0 |
6 | 0.8333 | 0.8276 | 78.58 s | 0.68% |
7 | 0.8333 | 0.8000 | 28.69 s | 4% |
8 | 0.8571 | 0.8571 | 28.50 s | 0 |
9 | 0.8750 | 0.8571 | 56.43 s | 2.05% |
10 | 0.8571 | 0.8571 | 28.53 s | 0 |
11 | 0.8000 | 0.7500 | 18.13 s | 6.25% |
12 | 0.7143 | 0.7143 | 31.28 s | 0 |
13 | 0.8000 | 0.8000 | 31.84 s | 0 |
14 | 0.8000 | 0.7500 | 65.52 s | 6.25% |
15 | 0.8333 | 0.8182 | 59.47 s | 1.81% |
16 | 0.8333 | 0.7955 | 90.39 s | 4.54% |
17 | 0.7778 | 0.7241 | 32.13 s | 6.91% |
18 | 0.7500 | 0.7188 | 66.84 s | 4.16% |
19 | 0.8000 | 0.7500 | 51.95 s | 6.25% |
20 | 0.7143 | 0.7143 | 53.46 s | 0 |
Average: | 45.09 s | 2.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Qiao, Y.; Zhang, S.; Li, Z.; Wu, N.; Song, T. Scheduling of Single-Arm Cluster Tools with Residency Time Constraints and Chamber Cleaning Operations. Appl. Sci. 2021, 11, 9193. https://doi.org/10.3390/app11199193
Li J, Qiao Y, Zhang S, Li Z, Wu N, Song T. Scheduling of Single-Arm Cluster Tools with Residency Time Constraints and Chamber Cleaning Operations. Applied Sciences. 2021; 11(19):9193. https://doi.org/10.3390/app11199193
Chicago/Turabian StyleLi, Jie, Yan Qiao, Siwei Zhang, Zhiwu Li, Naiqi Wu, and Tairan Song. 2021. "Scheduling of Single-Arm Cluster Tools with Residency Time Constraints and Chamber Cleaning Operations" Applied Sciences 11, no. 19: 9193. https://doi.org/10.3390/app11199193
APA StyleLi, J., Qiao, Y., Zhang, S., Li, Z., Wu, N., & Song, T. (2021). Scheduling of Single-Arm Cluster Tools with Residency Time Constraints and Chamber Cleaning Operations. Applied Sciences, 11(19), 9193. https://doi.org/10.3390/app11199193