Power Quality Analysis of the Output Voltage of AC Voltage and Frequency Controllers Realized with Various Voltage Control Techniques
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Literature Review
1.3. Research Contribution
1.4. Paper Organization
2. Pulse Selective Approach
3. Single-Phase AC Voltage Controllers
3.1. Phase-Angle Control
3.1.1. Voltage Regulation with Unipolar Voltage Control Scheme
3.1.2. Voltage Regulation with Bipolar Voltage Control Scheme
3.2. On-Off Control
3.3. PWM Voltage Control
4. Three-Phase AC Voltage Controller
5. Single-Phase Direct Frequency Controller
6. Validation of the Generated Harmonics
6.1. Validation through Simulation and Analytical Results
6.2. Validation through Practical Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanjan, P.S.; Gowtham, N.; Bhaskar, M.S.; Subramaniam, U.; Almakhles, D.; Padmanaban, S.; Yamini, N.G. Enhancement of Power Quality in Domestic Loads Using Harmonic Filters. IEEE Access 2020, 8, 197730–197744. [Google Scholar] [CrossRef]
- Mazzanti, G.; Diban, B.; Chiodo, E.; de Falco, P.; di Noia, L.P. Forecasting the Reliability of Components Subjected to Harmonics Generated by Power Electronic Converters. Electronics 2020, 9, 1266. [Google Scholar] [CrossRef]
- Kefalas, T.D.; Kladas, A.G. Harmonic Impact on Distribution Transformer No-Load Loss. IEEE Trans. Ind. Electron. 2010, 57, 193–200. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F. Harmonic Analysis of Grid Connected Power Electronic Systems in Low Voltage Distribution Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 70–79. [Google Scholar] [CrossRef]
- Zare, F.; Soltani, H.; Kumar, D.; Davari, P.; Delpino, H.A.M.; Blaabjerg, F. Harmonic Emissions of Three-Phase Diode Rectifiers in Distribution Networks. IEEE Access 2017, 5, 2819–2833. [Google Scholar] [CrossRef]
- Das, J.C. Passive filters—Potentialities and limitations. IEEE Trans. Ind. Appl. 2004, 40, 232–241. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Wu, W. Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System. IEEE Trans. Power Electron. 2014, 29, 6421–6432. [Google Scholar] [CrossRef]
- Quevedo, D.E.; Aguilera, R.P.; Perez, M.A.; Cortes, P.; Lizana, R. Model Predictive Control of an AFE Rectifier with Dynamic References. IEEE Trans. Power Electron. 2012, 27, 3128–3136. [Google Scholar] [CrossRef]
- Rahmani, S.; Mendalek, N.; Al-Haddad, K. Experimental Design of a Nonlinear Control Technique for Three-Phase Shunt Active Power Filter. IEEE Trans. Ind. Electron. 2010, 57, 3364–3375. [Google Scholar] [CrossRef]
- Ribeiro, R.L.d.; de Azevedo, C.C.; de Sousa, R.M. A Robust Adaptive Control Strategy of Active Power Filters for Power-Factor Correction, Harmonic Compensation, and Balancing of Nonlinear Loads. IEEE Trans. Ind. Electron. 2012, 27, 718–730. [Google Scholar]
- Wang, X.; Pang, Y.; Loh, P.C.; Blaabjerg, F. A Series-LC-Filtered Active Damper with Grid Disturbance Rejection for AC Power-Electronics-Based Power Systems. IEEE Trans. Ind. Power Electron. 2015, 30, 4037–4041. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, G.; Ding, D.; Zhang, G.; Xu, D. Impedance Based Stabilization Control Method for Reduced DC-Link Capacitance IPMSM Drives. IEEE Trans. Ind. Power Electron. 2019, 34, 9879–9890. [Google Scholar] [CrossRef]
- Meng, F.; Yang, W.; Yang, S. Effect of Voltage Transformation Ratio on the Kilovoltampere Rating of Delta-Connected Autotransformer for 12-Pulse Rectifier System. IEEE Trans. Ind. Electron. 2013, 60, 3579–3588. [Google Scholar] [CrossRef]
- Setlak, L.; Kowalik, R. Examination of multi-pulse rectifiers of PES systems used on airplanes compliant with the concept of electrified aircraft. Appl. Sci. 2019, 9, 1520. [Google Scholar] [CrossRef] [Green Version]
- Iwaszkiewicz, J.; Mysiak, P. Supply System for Three-Level Inverters Using Multi-Pulse Rectifiers with Coupled Reactors. Energies 2019, 12, 3385. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Wang, S.; Liu, Y. Dynamic Phasor Modeling of Various Multipulse Rectifiers and a VSI Fed by 18-Pulse Asymmetrical Autotransformer Rectifier Unit for Fast Transient Analysis. IEEE Access 2020, 8, 43145–43155. [Google Scholar] [CrossRef]
- Ashraf, N.; Izhar, T.; Abbas, G.; Yasin, A.R.; Kashif, A.R. Power quality analysis of a three-phase ac-to-dc controlled converter. In Proceedings of the 2017 International Conference on Electrical Engineering (ICEE), Lahore, Pakista, 2–4 March 2017; pp. 1–6. [Google Scholar]
- Siami, M.; Khaburi, D.A.; Rivera, M.; Rodríguez, J. An Experimental Evaluation of Predictive Current Control and Predictive Torque Control for a PMSM Fed by a Matrix Converter. IEEE Trans. Ind. Power Electron. 2017, 64, 8459–8471. [Google Scholar] [CrossRef]
- Elrayyah, A.; Safayet, Y.; Sozer, I.H.; Elbuluk, M. Efficient harmonic and phase estimator for single-phase grid-connected renewable energy systems. IEEE Trans. Ind. Power Appl. 2013, 1, 50. [Google Scholar] [CrossRef]
- Baradarani, F.; Zadeh, M.R.D.; Zamani, M.A. A phase-angle estimation method for synchronization of grid-connected power-electronic converters. IEEE Trans. Power Deliv. 2014, 30, 2. [Google Scholar] [CrossRef]
- Hansen, S.; Nielsen, P.; Blaabjerg, F. Harmonic cancellation by mixing nonlinear single-phase and three-phase loads. IEEE Trans. Ind. Appl. 2000, 36, 152–159. [Google Scholar] [CrossRef]
- Sharifi, S.; Monfared, M.; Babaei, M.; Pourfaraj, A. Highly Efficient Single-Phase Buck–Boost Variable-Frequency AC–AC Converter with Inherent Commutation Capability. IEEE Trans. Ind. Electron. 2020, 67, 3640–3649. [Google Scholar] [CrossRef]
- Ashraf, N.; Izhar, T.; Abbas, G.; Balas, V.E.; Balas, M.M.; Lin, T.; Asad, M.U.; Farooq, U.; Gu, J. A Single-Phase Buck and Boost AC-to-AC Converter with Bipolar Voltage Gain: Analysis, Design, and Implementation. Energies 2019, 12, 1376. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, N.; Izhar, T.; Abbas, G.; Awan, A.B.; Farooq, U.; Balas, V.E. A New Single-Phase AC Voltage Converter with Voltage Buck Characteristics for Grid Voltage Compensation. IEEE Access 2020, 8, 48886–48903. [Google Scholar] [CrossRef]
- Ashraf, N.; Izhar, T.; Abbas, G.; Awan, A.B.; Alghamdi, A.S.; Abo-Khalil, A.G.; Sayed, K.; Farooq, U.; Balas, V.E. A New Single-Phase Direct Frequency Controller Having Reduced Switching Count without Zero-Crossing Detector for Induction Heating System. Electronics 2020, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, N.; Izhar, T.; Abbas, G. A Single-Phase Buck-Boost Matrix Converter with Low Switching Stresses. Math. Probl. Eng. 2019, 2019, 6893546. [Google Scholar] [CrossRef]
- Xiuyun, W.; Wei, T.; Wang, R.; Hu, Y.; Liu, S. A Novel Carrier-Based PWM without Narrow Pulses Applying to High-Frequency Link Matrix Converter. IEEE Access 2020, 8, 157654–157662. [Google Scholar]
- Shi, N.; Zhang, X.; An, S.B.; Yan, Y.; Xia, C.L. Harmonic suppression modulation strategy for ultra-sparse matrix converter. IET Power Electron. 2016, 9, 589–599. [Google Scholar] [CrossRef]
- Dinh, T.N.; Dzung, P.Q. Space vector modulation for an indirect matrix converter with improved input power factor. Energies 2017, 10, 588. [Google Scholar]
- Qi, C.; Chen, X.; Qiu, Y. Carrier-Based Randomized Pulse Position Modulation of an Indirect Matrix Converter for Attenuating the Harmonic Peaks. IEEE Trans. Power Electron. 2013, 28, 3539–3548. [Google Scholar] [CrossRef]
- Wang, H. Topology and Modulation Scheme of a Three-Level Third-Harmonic Injection Indirect Matrix Converter. IEEE Trans. Ind. Electron. 2017, 64, 7612–7622. [Google Scholar] [CrossRef]
- Moynihan, F.J.; Egan, M.G.; Murphy, J.M.D. Theoretical spectra of space-vector-modulated waveforms. IEEE Proc. Electr. Power Appl. 1998, 145, 17–24. [Google Scholar] [CrossRef]
- You, K.; Xiao, D.; Rahman, M.F.; Uddin, M.N. Applying Reduced General Direct Space Vector Modulation Approach of AC–AC Matrix Converter Theory to Achieve Direct Power Factor Controlled Three-Phase AC–DC Matrix Rectifier. IEEE Trans. Ind. Electron. 2014, 50, 2243–2257. [Google Scholar] [CrossRef]
- Lian, K.L.; Perkins, B.K.; Lehn, P.W. Harmonic analysis of a three-phase diode bridge rectifier based on sampled-data model. IEEE Trans. Power Deliv. 2008, 23, 2. [Google Scholar] [CrossRef]
- Kwon, J.B.; Wang, X.; Blaabjerg, F.; Bak, C.L.; Sularea, V.S.; Busca, C. Harmonic interaction analysis in a grid-connected converter using harmonic state-space (HSS) modeling. IEEE Trans. Power Electron. 2016, 32, 9. [Google Scholar]
- Freitas, L.C.G.D.; Simões, M.G.; Canesin, C.A.; Freitas, L.C.D. Performance evaluation of a novel hybrid multipulse rectifier for utility interface of power electronic converters. IEEE Trans. Ind. Electron. 2007, 54, 6. [Google Scholar]
k | l | a6 | b6 | ||
---|---|---|---|---|---|
1 | 5 | 0 | |||
2 | 4 | 0 | |||
3 | 3 | 0 | |||
4 | 2 | 0 | |||
5 | 1 | 0 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
0 | 0 | −23.87 | 0 | −23.90 | 0 |
1 | 50 | 115 | 348 | 114.20 | −12 |
2 | 100 | 35.58 | 154 | 35.42 | 154 |
3 | 150 | 23.87 | 90 | 23.71 | 90 |
4 | 200 | 13.12 | 14 | 13.09 | 13.76 |
5 | 250 | 7.95 | 270 | 7.93 | −90 |
6 | 300 | 8.29 | 170 | 8.26 | 170 |
7 | 400 | 7.95 | 90 | 7.91 | 90 |
8 | 450 | 6.11 | 7.11 | 6.08 | 7 |
9 | 500 | 4.77 | 270 | 4.70 | −90 |
10 | 550 | 4.84 | 174 | 4.83 | 175 |
11 | 600 | 4.77 | 90 | 4.74 | 90 |
12 | 650 | 4.0 | 4.7 | 4.0 | 4.6 |
13 | 700 | 3.41 | 270 | 3.39 | −90 |
14 | 750 | 3.43 | 175 | 3.42 | 176 |
15 | 800 | 3.41 | 90 | 3.38 | 90 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
1 | 50 | 88.9 | 328 | 88.42 | −32.94 |
3 | 150 | 47.74 | 90 | 47.42 | 90 |
5 | 250 | 16 | 270 | 15.88 | −90 |
7 | 350 | 16 | 90 | 15.83 | 90 |
9 | 450 | 9.54 | 270 | 9.52 | −90 |
11 | 550 | 9.54 | 90 | 9.49 | 90 |
13 | 650 | 6.82 | 270 | 6.80 | −90 |
15 | 750 | 6.82 | 90 | 6.79 | 90 |
17 | 850 | 5.30 | 270 | 5.29 | −90 |
19 | 950 | 5.30 | 90 | 5.27 | 90 |
21 | 1050 | 4.34 | 270 | 4.32 | −90 |
23 | 1150 | 4.34 | 90 | 4.32 | 90 |
25 | 1250 | 3.68 | 270 | 3.65 | −90 |
27 | 1350 | 3.68 | 90 | 3.65 | 90 |
29 | 1450 | 3.20 | 270 | 3.17 | −90 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
1 | 12.5 | 25.46 | 90 | 25.37 | 90 |
3 | 37.5 | 54.56 | 90 | 54.26 | 90 |
4 | 50 | 75 | 0 | 74.41 | 0 |
5 | 62.5 | 42.06 | 270 | 42.06 | −90 |
7 | 87.5 | 11.46 | 270 | 11.46 | −90 |
9 | 112.5 | 5.87 | 270 | 5.80 | −90 |
11 | 137.5 | 3.63 | 270 | 3.58 | −90 |
13 | 162.5 | 2.49 | 270 | 2.46 | −90 |
15 | 187.5 | 1.82 | 270 | 1.80 | −90 |
17 | 212.5 | 1.39 | 270 | 1.38 | −90 |
19 | 237.5 | 1.10 | 270 | 1.10 | −90 |
21 | 262.5 | 0.89 | 270 | 0.88 | −90 |
23 | 287.5 | 0.73 | 270 | 0.73 | −90 |
25 | 312.5 | 0.62 | 270 | 0.61 | −90 |
27 | 337.5 | 0.53 | 270 | 0.52 | −90 |
29 | 362.5 | 0.46 | 270 | 0.45 | −90 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
1 | 50 | 75 | 0 | 74.40 | 0 |
3 | 150 | 0 | 0 | 0 | 0 |
5 | 250 | 47.74 | 90 | 47.77 | 88 |
7 | 350 | 47.74 | 270 | 47.53 | −92 |
9 | 450 | 0 | 0 | 0 | 0 |
11 | 550 | 0 | 0 | 0 | 0 |
13 | 650 | 0 | 0 | 0 | 0 |
15 | 750 | 0 | 0 | 0 | 0 |
17 | 850 | 15.91 | 90 | 15.98 | 83 |
19 | 950 | 15.91 | 270 | 15.86 | −97 |
21 | 1050 | 0 | 0 | 0 | 0 |
23 | 1150 | 0 | 0 | 0 | 0 |
25 | 1250 | 0 | 0 | 0 | 0 |
27 | 1350 | 0 | 0 | 0 | 0 |
29 | 1450 | 9.54 | 90 | 9.62 | 90 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
1 | 50 | 79.22 | −26.87 | 79.08 | −27.04 |
3 | 150 | 0 | 0 | 1.21 | 93 |
5 | 250 | 20.67 | 60 | 20.35 | 58.70 |
7 | 350 | 10.33 | −60 | 10.71 | −63.80 |
9 | 450 | 0 | 0 | 1.25 | 99.30 |
11 | 550 | 8.26 | 60 | 7.99 | 57.30 |
13 | 650 | 5.90 | −60 | 6.37 | −67.60 |
15 | 750 | 0 | 0 | 1.38 | 105 |
17 | 850 | 5.16 | 60 | 4.92 | 56.70 |
19 | 950 | 4.13 | −60 | 4.71 | −72.2 |
21 | 1050 | 0 | 0 | 1.47 | 110 |
23 | 1150 | 3.75 | 60 | 3.53 | 57 |
25 | 1250 | 3.18 | −60 | 3.88 | −78 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
0 | 0 | 0 | 3.02 | 90 | |
1 | 50 | 46.28 | −50.69 | 42.95 | −46.4 |
2 | 100 | 0 | 0 | 3.49 | 82.7 |
3 | 150 | 0 | 0 | 2.73 | 124.4 |
4 | 200 | 0 | 0 | 3.74 | 70.50 |
5 | 250 | 20.67 | −60 | 20.08 | −52.30 |
6 | 300 | 0 | 0 | 2.26 | 4.4 |
7 | 350 | 10.33 | 60 | 12.60 | 52.30 |
8 | 400 | 0 | 0 | 3.19 | 28.10 |
9 | 450 | 0 | 0 | 2.57 | 18 |
10 | 500 | 0 | 0 | 2.41 | 1.9 |
11 | 550 | 8.26 | 120 | 8.60 | 107 |
12 | 600 | 0 | 0 | 2.66 | 62.70 |
13 | 650 | 5.90 | 240 | 4.72 | 240 |
14 | 700 | 0 | 0 | 0.26 | 78 |
15 | 750 | 0 | 0 | 0.70 | 83 |
16 | 800 | 0 | 0 | 1.34 | 100 |
17 | 850 | 5.16 | −60 | 5.22 | −56 |
18 | 900 | 0 | 0 | 1.29 | −70.60 |
19 | 950 | 4.13 | 60 | 4.81 | 51,50 |
20 | 1000 | 0 | 0 | 1.60 | 35 |
21 | 1050 | 0 | 0 | 1.29 | 23 |
22 | 1100 | 0 | 0 | 1.49 | 7.0 |
23 | 1150 | 3.75 | 120 | 4.50 | 104 |
24 | 1200 | 0 | 0 | 2.61 | 74.20 |
25 | 1250 | 3.18 | 240 | 2.32 | 229 |
Harmonic Order (n) | Harmonic Frequency (Hz) | Mathematical Results | Simulink Results | ||
---|---|---|---|---|---|
Magnitude (V) | Phase-Angle (Deg) | Magnitude (V) | Phase-Angle (Deg) | ||
1 | 50 | 46.28 | −50.69 | 45.81 | −12.2 |
3 | 150 | 0 | 0 | 2.73 | 124.4 |
5 | 250 | 20.67 | −60 | 19.2 | 138 |
7 | 350 | 10.33 | 60 | 11.46 | −25 |
9 | 450 | 0 | 0 | 2.65 | 177 |
11 | 550 | 8.26 | 120 | 6.70 | 195 |
13 | 650 | 5.90 | 240 | 6.91 | 33 |
15 | 750 | 0 | 0 | 2.65 | 233 |
17 | 850 | 5.16 | −60 | 3.47 | 252 |
19 | 950 | 4.13 | 60 | 5.00 | 90 |
21 | 1050 | 0 | 0 | 2.65 | −70 |
23 | 1150 | 3.75 | 120 | 1.89 | −49 |
25 | 1250 | 3.18 | 240 | 3.93 | 143 |
Switching Scheme | Phase-Angle Control | On-Off Cycle Control | PWM Control | fo | |||
---|---|---|---|---|---|---|---|
25 Hz | 100 Hz | 150 Hz | 200 Hz | ||||
Computed RMS Voltage (V) | 62.86 | 53.03 | 53.03 | 90 | 90 | 88 | 87 |
Simulated RMS Voltage (V) | 62.40 | 53.89 | 53.89 | 89 | 90 | 87 | 85 |
Practically Measured RMS Voltage (V) | 60 | 50 | 50 | 88 | 85 | 85 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, N.; Abbas, G.; Abbassi, R.; Jerbi, H. Power Quality Analysis of the Output Voltage of AC Voltage and Frequency Controllers Realized with Various Voltage Control Techniques. Appl. Sci. 2021, 11, 538. https://doi.org/10.3390/app11020538
Ashraf N, Abbas G, Abbassi R, Jerbi H. Power Quality Analysis of the Output Voltage of AC Voltage and Frequency Controllers Realized with Various Voltage Control Techniques. Applied Sciences. 2021; 11(2):538. https://doi.org/10.3390/app11020538
Chicago/Turabian StyleAshraf, Naveed, Ghulam Abbas, Rabeh Abbassi, and Houssem Jerbi. 2021. "Power Quality Analysis of the Output Voltage of AC Voltage and Frequency Controllers Realized with Various Voltage Control Techniques" Applied Sciences 11, no. 2: 538. https://doi.org/10.3390/app11020538
APA StyleAshraf, N., Abbas, G., Abbassi, R., & Jerbi, H. (2021). Power Quality Analysis of the Output Voltage of AC Voltage and Frequency Controllers Realized with Various Voltage Control Techniques. Applied Sciences, 11(2), 538. https://doi.org/10.3390/app11020538