Modification of Nanocrystalline Porous Cu2-xSe Films during Argon Plasma Treatment
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Yang, J.; Wu, T.; Li, L.; Luo, W.; Jiang, W.; Wang, L. Nanostructured binary copper chalcogenides: Synthesis strategies and common applications. Nanoscale 2018, 10, 15130–15163. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.A.; Hussain, I. Copper selenide thin films from growth to applications. Solid State Sci. 2020, 100, 106101. [Google Scholar] [CrossRef]
- Gan, X.Y.; Keller, E.L.; Warkentin, C.; Crawford, S.; Frontiera, R.; Millstone, J.E. Plasmon-Enhanced Chemical Conversion Using Copper Selenide Nanoparticles. Nano Lett. 2019, 19, 2384–2388. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.C.; Li, H.; Yao, C.; Zhan, Z.; Yu, W.; Yu, Z.; Guo, C. Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes. Nano Energy 2018, 51, 774–785. [Google Scholar] [CrossRef]
- Chen, Y.H.; Davoisne, C.; Tarascon, J.M.; Guery, C. Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries. J. Mater. Chem. 2012, 22, 5295–5299. [Google Scholar] [CrossRef]
- Chen, X.Q.; Li, Z.; Bai, Y.; Sun, Q.; Wang, L.Z.; Dou, S.X. Room-Temperature Synthesis of Cu2-xE (E=S, Se) Nanotubes with Hierarchical Architecture as High-Performance Counter Electrodes of Quantum-Dot-Sensitized Solar Cells. Chem. Eur. J. 2015, 21, 1055–1063. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, C.; Zheng, C.; Xi, Y.; Wan, B. Synthesis and Thermoelectric Property of Cu2-xSe Nanowires. J. Phys. Chem. C 2010, 114, 14849–14853. [Google Scholar] [CrossRef]
- Chen, D.H.; Chen, G.; Jin, R.C.; Xu, H.M. Self-decorated Cu2-xSe nanosheets as anode materials for Li ion batteries and electrochemical hydrogen storage. Cryst. Eng. Comm. 2014, 16, 2810–2817. [Google Scholar] [CrossRef]
- Choi, J.; Kang, N.; Yang, H.Y.; Kim, H.; Son, S.U. Colloidal Synthesis of Cubic-Phase Copper Selenide Nanodiscs and Their Optoelectronic Properties. Chem. Mater. 2010, 22, 3586–3588. [Google Scholar] [CrossRef]
- Cao, H.L.; Qian, X.F.; Zai, J.T.; Yin, J.; Zhu, Z.K. Conversion of Cu2O nanocrystals into hollow Cu2-xSe nanocages with the preservation of morphologies. Chem. Commun. 2006, 43, 4548–4550. [Google Scholar] [CrossRef]
- Cho, A.; Ahn, S.; Yun, J.H.; Gwak, J.; Ahn, S.K.; Shin, K.; Yoo, J.; Song, H.; Yoon, K. The growth of Cu2-xSe thin films using nanoparticles. Thin Solid Films 2013, 546, 299–307. [Google Scholar] [CrossRef]
- Zimin, S.P.; Amirov, I.I.; Naumov, V.V.; Guseva, K.E. The Formation of Hollow Lead Structures on the Surface of PbSe Films Treated in Argon Plasma. Tech. Phys. Lett. 2018, 44, 518–521. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Mokrov, D.A.; Amirov, I.I.; Naumov, V.V.; Gremenok, V.F.; Juskenas, R.; Skapas, M.; Kim, W.Y.; Bente, K.; et al. Surface nanostructuring of CuIn1−xGaxSe2 films using argon plasma treatment. Semicond. Sci. Technol. 2017, 32, 075014. [Google Scholar] [CrossRef]
- Rasool, S.; Saritha, K.; Ramakrishna Reddy, K.T.; Tivanov, M.S.; Gremenok, V.F.; Zimin, S.P.; Pipkova, A.S.; Mazaletskiy, L.A.; Amirov, I.I. Annealing and plasma treatment effect on structural, morphological and topographical properties of evaporated β-In2S3 films. Mater. Res. Express 2020, 7, 016431. [Google Scholar] [CrossRef]
- Kim, S.; Kim, N.-H. Impurity Phases and Optoelectronic Properties of CuSbSe2 Thin Films Prepared by Cosputtering Process for Absorber Layer in Solar Cells. Coatings 2020, 10, 1209. [Google Scholar] [CrossRef]
- Zimin, S.; Gorlachev, E.; Amirov, I. Inductively Coupled Plasma Sputtering: Structure of IV-VI Semiconductors. In Encyclopedia of Plasma Technology, 1st ed.; Shohet, J.L., Ed.; CRC Press: New York, NY, USA, 2017; pp. 679–691. Available online: https://www.routledgehandbooks.com/doi/10.1081/E-EPLT-120053966 (accessed on 1 November 2020).
- Ghosh, A.; Kulsi, C.; Banerjee, D.; Mondal, A. Galvanic synthesis of Cu2-xSe thin films and their photocatalytic and thermoelectric properties. Appl. Surf. Sci. 2016, 369, 525–534. [Google Scholar] [CrossRef]
- Zhou, R.; Huang, Y.; Zhou, J.; Niu, H.; Wan, L.; Li, Y.; Xu, J.; Xu, J. Copper selenide (Cu3Se2 and Cu2-xSe) thin films: Electrochemical deposition and electrocatalytic application in quantum dot-sensitized solar cells. Dalton Trans. 2018, 47, 16587–16595. [Google Scholar] [CrossRef]
- Ramesh, K.; Bharathi, B.; Thanikaikarasan, S.; Mahalingam, T.; Sebastian, P.J. Growth and Characterization of Electroplated Copper Selenide Thin Films. J. New Mater. Electrochem. Syst. 2013, 16, 127–132. [Google Scholar] [CrossRef]
- Fedorova, E.A.; Maskaeva, L.N.; Markov, V.F.; Bamburov, V.G.; Voronin, V.I. Morphology and Thermal Stability of Thin Cu1.8Se Films Produced by Chemical Deposition. Inorg. Mater. 2019, 55, 106–115. [Google Scholar] [CrossRef]
- Liu, K.; Jing, M.; Zhang, L.; Li, J.; Shi, L. Characterization of the phases and morphology in synthesizing Cu2-xSe and CuSe films. Integr. Ferroelectr. 2018, 189, 71–77. [Google Scholar] [CrossRef]
- Bhuse, V.M.; Hankare, P.P.; Garadkar, K.; Khomane, A. A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films. Mater. Chem. Phys. 2003, 80, 82–88. [Google Scholar] [CrossRef]
- Carter, G.; Navinsek, B.; Whitton, H.L. Heavy ion sputtering induced surface topography development. In Sputtering by Particle Bombardment II; Berish, R., Ed.; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 52, pp. 231–269. [Google Scholar] [CrossRef]
- Whitton, J.L. Experimental Studies of Morphology Development. In Erosion and Growth of Solids Stimulated by Atom and Ion Beams, 1st ed.; Kiriakidis, G., Garter, G., Whitton, J.L., Eds.; Nato Science Series E; Springer: Dordrecht, The Netherlands, 1986; Volume 112, pp. 151–173. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 071301. [Google Scholar] [CrossRef]
- Meinander, K.; Nordlund, K. Irradiation-induced densification of cluster-assembled thin films. Phys. Rev. B 2009, 79, 045411. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-H.; Chen, C.-H.; Chen, S.-Y.; Yen, Y.-T.; Kuo, W.-C.; Liao, Y.-K.; Juang, J.-Y.; Kuo, H.-C.; Lai, C.-H.; Chen, L.-J.; et al. Large Scale Single-Crystal Cu(In,Ga)Se2 Nanotip Arrays for High Efficiency Solar Cell. Nano Lett. 2011, 11, 4443–4448. [Google Scholar] [CrossRef] [PubMed]
- Zimin, S.P.; Gorlachev, E.S.; Mokrov, D.A.; Amirov, I.I.; Gremenok, V.F.; Ivanov, V.A. Specific Features of Vapor–Liquid–Solid Nanostructure Growth on the Surface of SnS Films during Plasma Treatment. Semiconductors 2017, 51, 1728–1731. [Google Scholar] [CrossRef]
- Begrambekov, L.; Grunin, A.; Zakharov, A. Powder modification under influence of heat, electric field and particle irradiation. Nucl. Instrum. Methods B 2015, 354, 282–286. [Google Scholar] [CrossRef]
- Sigmund, P. Elements of Sputtering Theory. In Nanofabrication by Ion-Beam Sputtering, 1st ed.; Som, T., Kanjilal, D., Eds.; Pan Stanford Publishing: Singapore, 2013; pp. 1–40. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 76th ed.; CRC Press: New York, NY, USA, 1995; pp. 3–320. [Google Scholar]
- Piacente, V.; Scardala, P. A study on the vaporization of copper(II) selenide. J. Mater. Sci. Lett. 1994, 13, 1343–1345. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4245620 (accessed on 1 November 2020). [CrossRef]
- García, V.M.; Guerrero, L.; Nair, M.T.S.; Nair, P.K. Effect of thermal processing on optical and electrical properties of copper selenide thin films. Superf. Vacío 1999, 9, 213–218. [Google Scholar]
- Liew, J.Y.C.; Talib, Z.A.; Zainal, Z.; Kamarudin, M.A.; Osman, N.H.; Lee, H.K. Structural and transport mechanism studies of copper selenide nanoparticles. Semicond. Sci. Technol. 2019, 34, 125017. [Google Scholar] [CrossRef]
- Geng, Z.; Shi, D.; Shi, L.; Li, Y.; Snyder, G.J.; Lam, K. Conventional sintered Cu2-xSe thermoelectric material. J. Materiomics 2019, 5, 626–633. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimin, S.P.; Amirov, I.I.; Vasilev, S.V.; Fedorov, I.S.; Mazaletskiy, L.A.; Kim, N.-H. Modification of Nanocrystalline Porous Cu2-xSe Films during Argon Plasma Treatment. Appl. Sci. 2021, 11, 612. https://doi.org/10.3390/app11020612
Zimin SP, Amirov II, Vasilev SV, Fedorov IS, Mazaletskiy LA, Kim N-H. Modification of Nanocrystalline Porous Cu2-xSe Films during Argon Plasma Treatment. Applied Sciences. 2021; 11(2):612. https://doi.org/10.3390/app11020612
Chicago/Turabian StyleZimin, Sergey P., Ildar I. Amirov, Sergey V. Vasilev, Ivan S. Fedorov, Leonid A. Mazaletskiy, and Nam-Hoon Kim. 2021. "Modification of Nanocrystalline Porous Cu2-xSe Films during Argon Plasma Treatment" Applied Sciences 11, no. 2: 612. https://doi.org/10.3390/app11020612
APA StyleZimin, S. P., Amirov, I. I., Vasilev, S. V., Fedorov, I. S., Mazaletskiy, L. A., & Kim, N. -H. (2021). Modification of Nanocrystalline Porous Cu2-xSe Films during Argon Plasma Treatment. Applied Sciences, 11(2), 612. https://doi.org/10.3390/app11020612