Numerical Analysis of the Hydrogen Dispersion Behavior in Different Directions in a Naturally Ventilated Space
Abstract
:1. Introduction
2. Methods
2.1. Problem Description
2.2. Numerical Methods
- The hydrogen released at a constant rate;
- The phase change and chemical reaction were ignored during the leakage;
- The wall was isothermal and adiabatic. In addition, there was no heat exchange between the hydrogen and air.
3. Results and Discussions
3.1. Vertical Release Through the Leakages on the Floor
3.1.1. Iso-Surface of 4% Mole Fraction
- The first phase: the hydrogen rises from the leakage position to the ceiling.
- The second phase: the hydrogen extends along the ceiling after getting to the ceiling.
3.1.2. Iso-Surface of 1% Mole Fraction
3.2. Horizontal Release through the Leakages on the Wall
3.2.1. Iso-Surface of 4% Mole Fraction
3.2.2. Iso-Surface of 1% Mole Fraction
3.3. Effect of the Leakage Direction
3.3.1. Stratification
3.3.2. Diffusion Velocity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piraino, F.; Genovese, M.; Fragiacomo, P. Towards a new mobility concept for regional trains and hydrogen infrastructure. Energy Convers. Manag. 2020, 228, 113650. [Google Scholar] [CrossRef]
- Petronilla, F.; Matteo, G. Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Convers. Manag. 2020, 223, 113332. [Google Scholar]
- Veziroğlu, T.N.; Şahi, N.S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- Piera, M.; Martínez-Val, J.M.; José Montes, M. Safety issues of nuclear production of hydrogen. Energy Convers. Manag. 2006, 47, 2732–2739. [Google Scholar] [CrossRef]
- Abdo, P.; Huynh, B.P.; Irga, P.J.; Torpy, F.R. Evaluation of air flow through an active green wall biofilter. Urban For. Urban Green. 2019, 41, 75–84. [Google Scholar] [CrossRef]
- Abdo, P.; Huynh, B.P.; Irga, P.J.; Torpy, F.R. Distribution of air flow through a green wall module. In Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, Waikoloa, HI, USA, 30 July 2017. [Google Scholar]
- Swain, M.R.; Grilliot, E.S.; Swain, M.N. Risks incurrded by hydrogen escaping from containers and conduits. Hydrog. Program Rev. 1998, 2, 113–121. [Google Scholar]
- Matsuura, K.; Kanayama, H.; Tsukikawa, H.; Inoue, M. Numerical simulation of leaking hydrogen dispersion behavior in a partially open space. Int. J. Hydrog. Energy 2008, 33, 240–247. [Google Scholar] [CrossRef]
- Barley, C.D.; Gawlik, K. Buoyancy-driven ventilation of hydrogen from buildings: Laboratory test and model validation. Int. J. Hydrog. Energy 2009, 34, 5592–5603. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Michel, G.; Houssin-Agbomson, D. Comparison of helium and hydrogen releases in 1 m3 and 2 m3 two vents enclosures: Concentration measurements at different flow rates and for two diameters of injection nozzle. Int. J. Hydrog. Energy 2017, 42, 7542–7550. [Google Scholar] [CrossRef] [Green Version]
- Pitts, W.M.; Yang, J.C.; Blais, M.; Joyce, A. Dispersion and burning behavior of hydrogen released in a full-scale residential garage in the presence and absence of conventional automobiles. Int. J. Hydrog. Energy 2012, 37, 17457–17469. [Google Scholar] [CrossRef]
- Merilo, E.G.; Groethe, M.A.; Colton, J.D.; Chiba, S. Experimental study of hydrogen release accidents in a vehicle garage. Int. J. Hydrog. Energy 2011, 36, 2436–2444. [Google Scholar] [CrossRef]
- Swain, M.R.; Grilliot, E.S.; Swain, M.N. Experimental verification of a hydrogen risk assessment method. Chem. Health Saf. 1999, 6, 28–32. [Google Scholar] [CrossRef]
- Pitts, W.M.; Yang, J.C.; Fernandez, M.G. Helium dispersion following release in a 1/4-scale two-car residential garage. Int. J. Hydrog. Energy 2012, 37, 5286–5298. [Google Scholar] [CrossRef]
- Punetha, M.; Choudhary, A.; Khandekar, S. Stratification and mixing dynamics of helium in an air filled confined enclosure. Int. J. Hydrog. Energy 2018, 43, 19792–19809. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhao, H.; Xiong, Y. Study on the influence of barriers in the diffusion process of liquid hydrogen leakage. IOP Conf. Ser. Earth Environ. Sci. 2020, 546, 42048. [Google Scholar] [CrossRef]
- Pu, L.; Shao, X.; Zhang, S.; Lei, G.; Li, Y. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage. Asia-Pacfic J. Chem. Eng. 2019, 14, e2299. [Google Scholar] [CrossRef]
- Choi, J.; Hur, N.; Kang, S.; Lee, E.D.; Lee, K. A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage. Int. J. Hydrog. Energy 2013, 38, 8084–8091. [Google Scholar] [CrossRef]
- Shao, X.; Pu, L.; Li, Q.; Li, Y. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions. Int. J. Hydrog. Energy 2018, 43, 5249–5260. [Google Scholar] [CrossRef]
- Hwang, J.; Yoon, D.; Choi, K.; Kim, Y.; Kim, L.H. 3D CFD analysis of the hydrogen releases and dispersion around storage facilities. Korean J. Chem. Eng. 2008, 25, 217–222. [Google Scholar] [CrossRef]
- Afghan Haji Abbas, M.; Kheradmand, S.; Sadoughipour, H. Numerical study of the effect of hydrogen leakage position and direction on hydrogen distribution in a closed enclosure. Int. J. Hydrog. Energy 2020, 45, 23872–23881. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, C.; Gong, J.; Wang, Z.; Jiang, J.; Zhou, Y. Analytical and numerical predictions of hydrogen gas flow induced by wall and corner leakages in confined space. Int. J. Hydrog. Energy 2020, 45, 6848–6862. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Huang, W.; Dong, H.; Wang, T. Isentropic analysis and numerical investigation on high-pressure hydrogen jets with real gas effects. Int. J. Hydrog. Energy 2020, 45, 20256–20265. [Google Scholar] [CrossRef]
- Mao, X.; Ying, R.; Yuan, Y.; Li, F.; Shen, B. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Nagase, Y.; Sugiyama, Y.; Kubota, S.; Saburi, T.; Matsuo, A. Prediction model of the flow properties inside a tube during hydrogen leakage. J. Loss Prevent. Proc. 2019, 62, 103955. [Google Scholar] [CrossRef]
- Yassine, H.; Mourad, B.; Afif, E.; Ali, B.; Philippe, B.; Ftouh, K. Natural ventilation of hydrogen during a leak in a residential garage. Renew. Sustain. Energy Rev. 2015, 50, 810–818. [Google Scholar]
- Yao, Q.; Zhu, H. Numerical simulation of hydrogen dispersion behaviour in a partially open space by a stabilized balancing domain decomposition method. Comput. Math. Appl. 2015, 69, 1068–1079. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.; Yu, Y.; Zhang, Q. Numerical simulation of dispersion and distribution behaviors of hydrogen leakage in the garage with a crossbeam. Simulation 2019, 95, 1229–1238. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Miao, Y.; He, B.; Wang, C. Dispersion and behavior of hydrogen for the safety design of hydrogen production plant attached with nuclear power plant. Int. J. Hydrog. Energy 2020, 45, 20250–20255. [Google Scholar] [CrossRef]
- De Stefano, M.; Rocourt, X.; Sochet, I.; Daudey, N. Hydrogen dispersion in a closed environment. Int. J. Hydrog. Energy 2019, 44, 9031–9040. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Yan, X.; Malekian, R.; Li, Z. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship. Renew. Sustain. Energy Rev. 2018, 97, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Malakhov, A.A.; Avdeenkov, A.V.; du Toit, M.H.; Bessarabov, D.G. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation. Int. J. Hydrog. Energy 2020, 45, 9231–9240. [Google Scholar] [CrossRef]
- Qian, J.; Li, X.; Gao, Z.; Jin, Z. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station. Int. J. Hydrog. Energy 2020, 45, 14428–14439. [Google Scholar] [CrossRef]
- Chapelle, D.; Hocine, A.; Carbillet, S.; Boubakar, M.L. Analysis of intermetallic swelling on the behavior of a hybrid solution for compressed hydrogen storage–Part II: Finite element method simulation. Mater. Des. 2012, 36, 459–469. [Google Scholar] [CrossRef]
- Hussein, H.; Brennan, S.; Molkov, V. Dispersion of hydrogen release in a naturally ventilated covered car park. Int. J. Hydrog. Energy 2020, 45, 23882–23897. [Google Scholar] [CrossRef]
- Abdo, P.; Taghipour, R.; Huynh, B.P. Three-dimensional simulation of wind-driven ventilation through a windcatcher with different inlet designs. J. Therm. Sci. Eng. Appl. 2019, 12, 041008-1–041008-14. [Google Scholar] [CrossRef]
- Ishimoto, J.; Sato, T.; Combescure, A. Computational approach for hydrogen leakage with crack propagation of pressure vessel wall using coupled particle and Euler method. Int. J. Hydrogen Energy 2017, 42, 10656–10682. [Google Scholar] [CrossRef]
- Du, L.; Yuan, M.; Wei, H.; Xing, X.; Feng, D.; Liao, Y.; Chen, H.; Yang, D. Interconnected Pd nanoparticles supported on Zeolite-AFI for hydrogen detection under ultralow temperature. ACS Appl. Mater. Inter. 2019, 11, 36847–36853. [Google Scholar] [CrossRef]
- Kazuo, M. Effects of the geometrical configuration of a ventilation system on leaking hydrogen dispersion and accumulation. Int. J. Hydrogen Energy 2009, 34, 9869–9878. [Google Scholar]
- Liang, Z.; McKenna, A.; Clouthier, T.; David, R. Experimental study on accumulation of helium released into a semi-confined enclosure with distributed leaks. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, T.; Liu, C.; Chen, M.; Ji, S.; Christopher, D.M.; Li, X. Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage. Int. J. Hydrog. Energy 2020, 46, 1420–1433. [Google Scholar] [CrossRef]
- Cariteau, B.; Brinster, J.; Tkatschenko, I. Experiments on the distribution of concentration due to buoyant gas low flow rate release in an enclosure. Int. J. Hydrog. Energy 2011, 36, 2505–2512. [Google Scholar] [CrossRef]
x (m) | y (m) | z (m) | |
---|---|---|---|
Model 1 | 0.22 | 0.00 | 0.37 |
Model 2 | 1.45 | 0.00 | 0.37 |
Model 3 | 2.67 | 0.00 | 0.37 |
Model 4 | 0.00 | 0.22 | 0.37 |
Model 5 | 0.00 | 0.99 | 0.37 |
No. of Elements | Mesh Size (m) | S1 | S2 | S3 | S4 | ||||
---|---|---|---|---|---|---|---|---|---|
Mole Fraction | Deviation | Mole Fraction | Deviation | Mole Fraction | Deviation | Mole Fraction | Deviation | ||
113,812 | 0.030 | 3.82 | 2.35 | 5.18 | 0.97 | 5.11 | 0.19 | 3.35 | 2.98 |
230,972 | 0.024 | 3.81 | 2.62 | 5.20 | 1.36 | 5.05 | 1.38 | 3.41 | 1.17 |
369,015 | 0.018 | 3.91 | — | 5.13 | — | 5.12 | — | 3.45 | — |
Iso-Surface of 4% Mole Fraction | Iso-Surface of 1% Mole Fraction | |||
---|---|---|---|---|
Phase 1 | Phase 2 | Phase 1 | Phase 2 | |
Model 1 | 250 s | 50 s | 10 s | 15 s |
Model 2 | 230 s | 30 s | 13 s | 27 s |
Model 3 | 400 s | 50 s | 10 s | 50 s |
Model 4 | 100 s | 70 s | 6 s | 14 s |
Model 5 | 5 s | 65 s | 5 s | 15 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, Q.; Hou, X.; Li, Y.; Miao, Y.; Li, K.; Zhang, L. Numerical Analysis of the Hydrogen Dispersion Behavior in Different Directions in a Naturally Ventilated Space. Appl. Sci. 2021, 11, 615. https://doi.org/10.3390/app11020615
Zhang X, Wang Q, Hou X, Li Y, Miao Y, Li K, Zhang L. Numerical Analysis of the Hydrogen Dispersion Behavior in Different Directions in a Naturally Ventilated Space. Applied Sciences. 2021; 11(2):615. https://doi.org/10.3390/app11020615
Chicago/Turabian StyleZhang, Xiaolu, Qiubo Wang, Xulei Hou, Yuejuan Li, Yang Miao, Kun Li, and Li Zhang. 2021. "Numerical Analysis of the Hydrogen Dispersion Behavior in Different Directions in a Naturally Ventilated Space" Applied Sciences 11, no. 2: 615. https://doi.org/10.3390/app11020615
APA StyleZhang, X., Wang, Q., Hou, X., Li, Y., Miao, Y., Li, K., & Zhang, L. (2021). Numerical Analysis of the Hydrogen Dispersion Behavior in Different Directions in a Naturally Ventilated Space. Applied Sciences, 11(2), 615. https://doi.org/10.3390/app11020615