Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Contributions
- To attain the notched frequency band for AWS (1.8–2.2 GHz), an E-shaped stub is loaded on the top of the radiator.
- A split elliptical slot at the base of the radiating patch is used to achieve a band notch at the C band (4–7.2 GHz).
- By placing a C-shaped resonator near the feed, a band notch at the X band (9.8–10.4 GHz) is acquired.
2. Design Methodology
2.1. Phase 1: Design of Super Wideband Antenna (Antenna 1)
2.2. Phase 2: Design of Single Notched Band SWB Antenna (Antenna 2)
2.3. Phase 3: Design of Dual Band-Notched SWB Antenna (Antenna 3)
2.4. Phase 4: Design of Triple Band-Notched SWB Antenna (Proposed Antenna)
3. Parametric Analysis
3.1. Independently Controllable Notch AWS Band (1.8–2.2 GHz)
3.2. Independently Controllable Notch C Band (4–7.2 GHz)
3.3. Independently Controllable Notch X Band (9.8–10.4 GHz)
4. Current Distribution Analysis
5. Results and Discussion
5.1. Gain
5.2. Radiation Pattern
6. Time-Domain Characterization
6.1. System Fidelity Factor (SFF)
6.2. Group Delay
6.3. Transfer Function
7. Comparative Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, S.; Mohanty, M.N.; Mishra, L.P. Bandwidth improvement of compact planar antenna for UWB application with dual notch band performance using parasitic resonant structure. Prog. Electromagn. Res. 2018, 66, 29–39. [Google Scholar]
- Dong, J.; Li, Q.; Deng, L. Compact planar ultrawideband antennas with 3.5/5.2/5.8 GHz triple band-notched characteristics for internet of things applications. Sensors 2017, 17, 349. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, G. A compact printed UWB antenna with triple band-notched characteristics. Microw. Opt. Technol. Lett. 2012, 54, 2146–2150. [Google Scholar] [CrossRef]
- Zhou, D.; Gao, S.; Zhu, F.; Abd-Alhameed, R.A.; Xu, J.D. A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics. Prog. Electromagn. Res. 2012, 123, 47–65. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Cui, L.; Liu, H.; Lv, M.; Sun, X.B. A new UWB antenna with band-notched characteristic. Prog. Electromagn. Res. 2018, 74, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Che, W. A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 293–296. [Google Scholar] [CrossRef]
- Yang, B.; Qu, S. A compact integrated Bluetooth UWB dual-band notch antenna for automotive communications. AEU Int. J. Electron. Commun. 2017, 80, 104–113. [Google Scholar] [CrossRef]
- Sharma, M. Superwideband Triple Notch Monopole Antenna for Multiple Wireless Applications. Wirel. Pers. Commun. 2019, 104, 459–470. [Google Scholar] [CrossRef]
- Dhasarathan, V.; Sharma, M.; Kapil, M.; Vashist, P.C.; Patel, S.K.; Nguyen, T.K. Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications. Wirel. Netw. 2020, 26, 2845–2855. [Google Scholar] [CrossRef]
- Weng, Y.F.; Cheung, S.W.; Yuk, T.I. Triple band-notched UWB antenna using meandered ground stubs. In Proceedings of the 2010 Loughborough Antennas & Propagation Conference 2010, Loughborough, UK, 8–9 November 2010; pp. 341–344. [Google Scholar]
- Yadav, D.; Abegaonkar, M.P.; Koul, S.K.; Tiwari, V.; Bhatnagar, D. A compact dual band-notched UWB circular monopole antenna with parasitic resonators. AEU Int. J. Electron. Commun. 2018, 84, 313–320. [Google Scholar] [CrossRef]
- Manohar, M.; Kshetrimayum, R.S.; Gogoi, A.K. A compact dual band-notched circular ring printed monopole antenna for super wideband applications. Radio Eng. 2017, 26, 64–70. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, S.O. Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Trans. Antennas Propag. 2006, 54, 1688–1692. [Google Scholar] [CrossRef]
- Sarkar, D.; Srivastava, K.V.; Saurav, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 396–399. [Google Scholar] [CrossRef]
- Sarkar, M.; Dwari, S.; Daniel, A. Printed monopole antenna for ultra-wideband application with tunable triple band-notched characteristics. Wirel. Pers. Commun. 2015, 84, 2943–2954. [Google Scholar] [CrossRef]
- Balani, W.; Sarvagya, M.; Samasgikar, A.; Ali, T.; Kumar, P. Design and Analysis of Super-Wideband Antenna for Microwave Applications. Sensors 2021, 21, 477. [Google Scholar] [CrossRef]
- Esmati, Z.; Moosazadeh, M. Design of compact dual band-notched UWB antenna using slotted conductor-backed plane. Arab. J. Sci. Eng. 2014, 39, 4707–4713. [Google Scholar] [CrossRef]
- Tilanthe, P.; Sharma, P.C.; Bandopadhyay, T.K. A compact UWB antenna with dual band rejection. Progress Electromagn. Res. 2011, 35, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Shen, D.; Zhang, X.; Wu, K. A compact disc ultrawideband (UWB) antenna with quintuple band rejections. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1517–1520. [Google Scholar]
- Iqbal, A.; Smida, A.; Mallat, N.K.; Islam, M.T.; Kim, S. A compact UWB antenna with independently controllable notch bands. Sensors 2019, 19, 1411. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Shi, X.W.; Hei, Y.Q. Novel planar UWB monopole antenna with triple band-notched characteristics. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1094–1098. [Google Scholar]
- Shaik, L.A.; Saha, C.; Siddiqui, J.Y.; Antar, Y.M. Ultra-wideband monopole antenna for multiband and wideband frequency notch and narrowband applications. IET Microw. Antennas Propag. 2016, 10, 1204–1211. [Google Scholar] [CrossRef]
- Kundu, S.; Jana, S.K. Leaf-shaped CPW-fed UWB antenna with triple notch bands for ground penetrating radar applications. Microw. Opt. Technol. Lett. 2018, 60, 930–936. [Google Scholar] [CrossRef]
- Elhabchi, M.; Srifi, M.N.; Touahni, R. A tri-band-notched UWB planar monopole antenna using DGS and semi arc-shaped slot for WIMAX/WLAN/X-band rejection. Prog. Electromagn. Res. 2017, 70, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Esselle, K.P.; Hay, S.G.; Zhong, S.S. Study of an extremely wideband monopole antenna with triple band-notched characteristics. Prog. Electromagn. Res. 2012, 123, 143–158. [Google Scholar] [CrossRef] [Green Version]
Symbol | Dimension (mm) | Symbol | Dimension (mm) |
---|---|---|---|
W | 40 | R4 | 2.6 |
L | 45 | R5 | 2.3 |
R1 | 9.7 | LF | 21.4 |
R2 | 5.8 | WF | 3.6 |
R3 | 4 | LG | 15 |
E1 | 34 | C1 | 5 |
E2 | 10 | C2 | 2.4 |
E3 | 1.2 | C3 | 1.6 |
EMIN | 4.2 | CG | 0.6 |
EMAX | 8.16 | CT | 0.54 |
EG | 0.6 | CS | 0.6 |
ER | 0.2 |
AWS | C Band | X Band | |||
---|---|---|---|---|---|
E2 (mm) | Bandwidth (GHz) | EMIN (mm) | Bandwidth (GHz) | C2 (mm) | Bandwidth (GHz) |
8 | 2.1–2.5 | 4 | 4.11–7.14 | 2.2 | 10.2 to 10.69 |
9 | 2–2.4 | 4.2 | 4–7.13 | 2.3 | 10.06 to 10.57 |
10 | 1.8–2.2 | 4.4 | 3.79–7.05 | 2.4 | 9.86 to 10.34 |
Ref. No. | Size (λ Free Space Wavelength Calculated at Lower Frequency) | Frequency (GHz) | Notch BW (GHz) | Notch Bands | BW (%) | Bandwidth Ratio | BDR | Gain (Passband in dB) | Gain at Notch Frequency (Rejection Level in dB) | VSWR at the Notch Band | No. of Notches | Antenna Structure | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Radiator Design | Notch Structure | ||||||||||||
[1] | 0.11λ × 0.15λ | 2.8–13 | 3.3–4.2, 5.1–5.4 | WiMAX, WLAN, | 129 | 4.64:1 | 7818 | 0–2.6 | 5, 6 | 7,5 | Dual | Square-shaped radiator | J-shaped and F-shaped slot |
[2] | 0.07λ × 0.11λ | 2.12–14.8 | 3.36–4.16, 4.92–5.36, 5.68–6.0 | WiMAX, lower WLAN, upper WLAN | 150 | 6.98:1 | 19,480 | 2–6 | 12, 9, 8 | 10,5,4 | Triple | Rectangular patch antenna | Inverted T-shaped slot, comb-shaped slot, rectangular-shaped slot |
[3] | 0.24λ × 0.29λ | 2.8–12.6 | 3.43–3.65, 4.95–5.25, 5.36–5.85 | WiMAX, WLAN | 127 | 4.5:1 | 1825 | 2.5–5.5 | 2.5, 2, 0.5 | 5,5.5,3.5 | Triple | Circular patch radiator | C-shaped slots |
[4] | 0.35λ × 0.35λ | 3–11 | 5.15– 5.35, 5.725–5.825 | WLAN | 114 | 3.66:1 | 931 | 2.5–4 | (−5.2 and −2.4) | 5.8,8.5 | Dual | Circular radiating patch | Quarter wavelength open ended slits |
[5] | 0.30λ × 0.28λ | 3–11 | 5.0–5.8 | WLAN | 114 | 3.66:1 | 1357 | 2.5–7 | 12.5 | 27 | Single | Circular-shaped radiating patch | Pair of half wavelength stubs and slits |
[6] | 0.3λ × 0.24λ | 2.8–11.0 | 3.3–4, 5.05–5.90 | WiMAX, WLAN | 119 | 3.92:1 | 1653 | 1–4 | 4, 6 | 15,11 | Dual | Square radiating patch | T-shaped stub, pair of U-shaped parasitic strips |
[7] | 0.24λ × 0.24λ | 2.39–2.49, 3.1–11.4 | 4.97–5.48, 5.69–5.99 | Lower WLAN, Upper WLAN | 130 | 4.76:1 | 2257 | 0.5–5 | 4, 1 | Not defined | Dual | Quasi U-shaped antenna | Pair of inverted L-shaped stubs |
[8] | 0.25λ × 0.29λ | 2.76–39.53 | 3.74, 5.45, 7.65 | WiMAX, WLAN X band | 174 | 14.32:1 | 2400 | 5–6.88 | 11.38, 9.65, 8.13 | 20.64, 5.65 and 12.05 | Triple | Guitar-shaped radiating patch | Inverted T-shaped stub, pair of elliptical slots |
[9] | 0.15λ × 0.22λ | 2.34–20.00 | 3.30–3.80, 5.150–5.825, 7.25–7.75 | WiMAX, WLAN, DSS | 158 | 8.54:1 | 4788 | 3.39–4.98 | 6.95, 8.95, 7.98 | Not defined | Triple | Tilted ellipse-shaped radiating patch | Fractal stub, pair of modified rectangular slots |
[10] | 0.26λ × 0.35λ | 2.68–11.15 | 3.3–3.6, 5.15–5.35, 5.725–5.825 | WiMAX, WLAN, Upper WLAN | 122 | 4.16:1 | 1341 | 2–4.75 | 3.4, 2.3 and 2.1 | Not defined | Triple | Elliptical-shaped radiating patch | Three sets of meandered ground stubs |
[11] | 0.32λ × 0.24λ | 3–11 | 5–5.4, 7.8–8.4 | WLAN ITU band | 114 | 3.66:1 | 1484 | 1.79–4.47 | 2, 3 | Not defined | Dual | Circular monopole radiator | U-shaped and I-shaped parasitic elements |
[12] | 0.13λ × 0.27λ | 1.6–25 | 3.2–4.4, 7.2–8.4 | WiMAX/C band | 176 | 15.6:1 | 5014 | 5.8 | 14, 8 | 5,4 | Dual | Circular monopole radiating patch | U-shaped parasitic element, U-shaped slot |
[13] | 0.2λ × 0.2λ | 3–17 | 5.15–5.825 | IEEE802.11a, HIPERLAN/2 | 140 | 5.66:1 | 3500 | 2–5 | 4 | 4 | Single | Hemi-ellipse-shaped antenna | Parasitic strip |
[14] | 0.26λ × 0.26λ | 2.21–11.71 | 3.3–3.8, 5.15–5.85, 7.9–8.4 | WiMAX, WLAN, X-band | 136 | 5.29:1 | 2011 | 1–6 | 1, 3 | 7.5, 5.5, 4 | Triple | Semi-elliptical-shaped radiating patch | Complementary SRR and rectangular SRR |
[15] | 0.24λ × 0.35 | 3.1–11 | 3.4–3.6, 5.1–5.3, 5.7–5.9 | WiMAX WLAN | 112 | 3.54:1 | 1333 | 2–4.5 | 6, 2.5, 2 | Not defined | Triple | Bevel-shaped radiating patch | Pair of slots, circular CSRR, rectangular-shaped CSRR |
[17] | 0.17λ × 0.17λ | 2.8–14.8 | 3.3–3.6, 5.15–5.825 | WiMAX WLAN | 136 | 5.28:1 | 4706 | 0.5–5 | 4, 6 | 18, 11 | Dual | Square-shaped radiating patch | Inverted L-shaped slot, U-shaped slot |
[18] | 0.32λ × 0.29λ | 2.4–21.7 | 5.15–5.825, 3.3–3.6 | IEEE802.11a, HIPERLAN/2 WLAN, WiMAX | 153 | 9.04:1 | 1649 | Not defined | Not defined | 4.5, 4.5 | Dual | Stepped square-shaped radiating patch | L-shaped slot, U-shaped slot |
[19] | 0.21λ × 0.26λ | 2.45–12 | 3.27–3.57, 5.01–5.45, 5.55–6.05, 7.05–7.45, 7.83–8.19 | WiMAX, WLAN, downlink of X-band satellite communication, ITU8-GHz band signals | 132 | 4.89:1 | 2418 | 2–6 | 2, 3.0.5, 1, 1.5 | 5, 7, 8, 5, 8 | Penta | Portrait radiating patch | C-shaped slot, nested C-shaped slot, arc-shaped stub, pair of U-shaped slots |
[20] | 0.15λ × 0.16λ | 1.4–11.3 | 1.8–2.3, 5.6–6.1, 3.2–3.8 | Advanced wireless system, IEEE 802.11/HIPERLAN, WiMAX | 156 | 8.07:1 | 6500 | 3.6–4.6 | 2.5, 3, 1 | 9, 10, 18 | Triple | Maple leaf-shaped radiator | E-shaped resonator, meandered slot, and U-shaped slot |
[21] | 0.35λ × 0.33λ | 2.9–13 | 3.3–3.9, 5.2–5.35, 5.8–6.0 | WiMAX WLAN | 127% | 4.48:1 | 1099 | 4–6 | 5, 6, 7 | 20, 10, 20 | Triple | Spade-shaped monopole radiator | Hook-shaped structure, inverted ohm-shaped slot, semi octagonal resonator |
[22] | 0.43 × 0.61 | 2.6–10.8 | 5.09, 6.34, and 8.04 | WLAN X Band | 122 | 4.15:1 | 465 | 0–4 | 9.6, 12.7,4.27 | Not defined | Triple | Circular monopole radiating patch | Three pairs of circular SRRs, |
[23] | 0.33λ × 0.29λ | 2.58–11.62 | 3.28–3.82, 5.12–5.4, 5.7–6 | WiMAX, WLAN, DSRC | 127 | 4.5:1 | 1327 | 2–5 | 5, 10, 4 | 12, 10, 4 | Triple | Leaf structured CPW-fed ground plane | Two rectangular SRRs and one circular SRR |
[24] | 0.43λ × 0.24λ | 3.1–11 | 3.3–3.7, 7.1–7.76, 5.15–5.825 | WiMAX, Downlink X-band satellite communication, WLAN | 112 | 3.54:1 | 1085 | 2.7–3.6 | 5, 2, 6 | Not defined | Triple | Fork-shaped radiating patch | U-shaped slot, modified U-shaped slot, semi-arch-shaped slot |
[25] | 0.35λ × 0.36λ | 0.72–25 | 2.4–2.484, 5.15–5.85, 7.25–7.75 | WLAN, downlinks of X-band satellite communication | 189 | 34.72:1 | 1500 | 2.5–7.5 | 1.5, −2, 3 | 10, 10, 10 | Triple | Modified elliptical-shaped radiating patch | Pair of arc-shaped slots, inverted U-shaped slot |
Prop. work | 0.22λ × 0.25λ | 1.67–47.5 | 1.8–2.2, 4–7.2, 9.8–10.4 | AWS, C Band, X Band | 186 | 28.44:1 | 3382 | 2–15 | 9.9, 3.6, 1.8 | 4, 7, 5.9 | Triple | Concentric structured monopole antenna | E-shaped stub, split elliptical slot, C-shaped resonator |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balani, W.; Sarvagya, M.; Ali, T.; Samasgikar, A.; Das, S.; Kumar, P.; Anguera, J. Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications. Appl. Sci. 2021, 11, 711. https://doi.org/10.3390/app11020711
Balani W, Sarvagya M, Ali T, Samasgikar A, Das S, Kumar P, Anguera J. Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications. Applied Sciences. 2021; 11(2):711. https://doi.org/10.3390/app11020711
Chicago/Turabian StyleBalani, Warsha, Mrinal Sarvagya, Tanweer Ali, Ajit Samasgikar, Saumya Das, Pradeep Kumar, and Jaume Anguera. 2021. "Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications" Applied Sciences 11, no. 2: 711. https://doi.org/10.3390/app11020711
APA StyleBalani, W., Sarvagya, M., Ali, T., Samasgikar, A., Das, S., Kumar, P., & Anguera, J. (2021). Design of SWB Antenna with Triple Band Notch Characteristics for Multipurpose Wireless Applications. Applied Sciences, 11(2), 711. https://doi.org/10.3390/app11020711