A Feedback Control Method to Maintain the Amplitude of the RF Signal Applied to Ion Traps
Abstract
:1. Introduction
2. Experimental Environment
3. FPGA-Based Feedback Control
3.1. Previous Results
3.2. Baseline
3.3. FPGA-Based Feedback Controller
3.3.1. Finite-State Machine
3.3.2. Aluminum Enclosure
3.3.3. Design of the Controllers
4. Experiments and Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballance, C.J.; Harty, T.P.; Linke, N.M.; Sepiol, M.A.; Lucas, D.M. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Phys. Rev. Lett. 2016, 117, 060504. [Google Scholar] [CrossRef] [PubMed]
- Weidt, S.; Randall, J.; Webster, S.C.; Lake, K.; Webb, A.E.; Cohen, I.; Navickas, T.; Lekitsch, B.; Retzker, A.; Hensinger, W.K. Trapped-Ion Quantum Logic with Global Radiation Fields. Phys. Rev. Lett. 2016, 117, 220501. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, S.-T.; Duan, L.-M. Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear Paul trap. Phys. Rev. A 2018, 97, 062325. [Google Scholar] [CrossRef] [Green Version]
- Arrazola, I.; Plenio, M.; Solano, E.; Casanova, J. Hybrid Microwave-Radiation Patterns for High-Fidelity Quantum Gates with Trapped Ions. Phys. Rev. Appl. 2020, 13, 024068. [Google Scholar] [CrossRef] [Green Version]
- Gale, E.P.G.; Mehdi, Z.; Oberg, L.M.; Ratcliffe, A.K.; Haine, S.A.; Hope, J.J. Optimized fast gates for quantum computing with trapped ions. Phys. Rev. A 2020, 101, 052328. [Google Scholar] [CrossRef]
- Wineland, D.J.; Barrett, M.D.; Britton, J.W.; Chiaverini, J.; Demarco, B.; Itano, W.M.; Jelenkovic, B.; Langer, C.; Leibfried, D.; Meyer, V.; et al. Quantum information processing with trapped ions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2003, 361, 1349–1361. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.-L.; Monroe, C.; Duan, L.-M. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. EPL Europhysics Lett. 2006, 73, 485–491. [Google Scholar] [CrossRef]
- Shapira, Y.; Shaniv, R.; Manovitz, T.; Akerman, N.; Ozeri, R. Robust Entanglement Gates for Trapped-Ion Qubits. Phys. Rev. Lett. 2018, 121, 180502. [Google Scholar] [CrossRef] [Green Version]
- Blumel, R.; Grzesiak, N.; Nam, Y. Power-Optimal, Stabilized Entangling Gate Between Trapped-Ion Qubits. arXiv 2019, arXiv:1905.09292. [Google Scholar]
- Gehm, M.E.; O’Hara, K.M.; Savard, T.A.; Thomas, J.E. Dynamics of noise-induced heating in atom traps. Phys. Rev. A 1998, 58, 3914–3921. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.-J.; Ruschhaupt, A.; Muga, J.G. Fast shuttling of a particle under weak spring-constant noise of the moving trap. Phys. Rev. A 2018, 97, 053402. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.-J.; Ruschhaupt, A.; Martínez-Garaot, S.; Muga, J.G. Noise Sensitivities for an Atom Shuttled by a Moving Optical Lattice via Shortcuts to Adiabaticity. Entropy 2020, 22, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.G.; Wong-Campos, J.D.; Restelli, A.; Landsman, K.A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. Active stabilization of ion trap radiofrequency potentials. Rev. Sci. Instrum. 2016, 87, 053110. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.; Debnath, S.; Manning, T.A.; Figgatt, C.; Gong, Z.-X.; Duan, L.-M.; Monroe, C. Optimal Quantum Control of Multimode Couplings between Trapped Ion Qubits for Scalable Entanglement. Phys. Rev. Lett. 2014, 112, 190502. [Google Scholar] [CrossRef] [Green Version]
- Snyder, D.T.; Pulliam, C.J.; Wiley, J.S.; Duncan, J.; Cooks, R.G. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers. J. Am. Soc. Mass Spectrom. 2016, 27, 1243–1255. [Google Scholar] [CrossRef]
- Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 1990, 62, 531–540. [Google Scholar] [CrossRef]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Lee, M.; Kwon, Y.-D.; Cho, D.-I.D.; Kim, T. Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps. J. Vis. Exp. 2017, 126, e56060. [Google Scholar] [CrossRef] [Green Version]
- Harahap, C.R.; Hanamoto, T. Fictitious Reference Iterative Tuning-Based Two-Degrees-of-Freedom Method for Permanent Magnet Synchronous Motor Speed Control Using FPGA for a High-Frequency SiC MOSFET InverterMOSFET Inverter. Appl. Sci. 2016, 6, 387. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Badar, J.; Akhtar, F.; Bukhari, S.S.H.; Ro, J.-S. Real-Time Controller Design Test Bench for High-Voltage Direct Current Modular Multilevel Converters. Appl. Sci. 2020, 10, 6004. [Google Scholar] [CrossRef]
- Pagano, G.; Hess, P.W.; Kaplan, H.B.; Tan, W.L.; Richerme, P.; Becker, P.; Kyprianidis, A.; Zhang, J.; Birckelbaw, E.; Hernandez, M.R.; et al. Cryogenic trapped-ion system for large scale quantum simulation. Quantum Sci. Technol. 2018, 4, 014004. [Google Scholar] [CrossRef]
- Hahn, H.; Zarantonello, G.; Schulte, M.; Bautista-Salvador, A.; Hammerer, K.; Ospelkaus, C. Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer. npj Quantum Inf. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Gandolfi, D.; Niedermayr, M.; Kumph, M.; Brownnutt, M.; Blatt, R. Compact radio-frequency resonator for cryogenic ion traps. Rev. Sci. Instruments 2012, 83, 084705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nice, N.S. Control Systems Engineering, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 455–532. [Google Scholar]
Type of data | Commercial UniversalPI Controller | FPGA-Based Controller | |
---|---|---|---|
PI Controller | Lag Compensator | ||
Standard deviation (μV) | 1121.7 | 61.58 | 63.28 |
Percentage of the fluctuation in the amplitude of the RF signal (%) | 1.806 | 0.099 | 0.102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Oh, H.; Yoo, S.; Kim, T.; Cho, D.“. A Feedback Control Method to Maintain the Amplitude of the RF Signal Applied to Ion Traps. Appl. Sci. 2021, 11, 837. https://doi.org/10.3390/app11020837
Park Y, Oh H, Yoo S, Kim T, Cho D“. A Feedback Control Method to Maintain the Amplitude of the RF Signal Applied to Ion Traps. Applied Sciences. 2021; 11(2):837. https://doi.org/10.3390/app11020837
Chicago/Turabian StylePark, Yunjae, Hyunseok Oh, Seungwoo Yoo, Taehyun Kim, and Dongil “Dan” Cho. 2021. "A Feedback Control Method to Maintain the Amplitude of the RF Signal Applied to Ion Traps" Applied Sciences 11, no. 2: 837. https://doi.org/10.3390/app11020837
APA StylePark, Y., Oh, H., Yoo, S., Kim, T., & Cho, D. “. (2021). A Feedback Control Method to Maintain the Amplitude of the RF Signal Applied to Ion Traps. Applied Sciences, 11(2), 837. https://doi.org/10.3390/app11020837