Special Issue on Computational Methods and Engineering Solutions to Voice II
1. Introduction
2. High Speed Videoendoscopy
3. Numerical Modelling
4. Machine Learning
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamauchi, A.; Imagawa, H.; Yokonishi, H.; Sakakibara, K.-I.; Tayama, N. Multivariate Analysis of Vocal Fold Vibrations on Various Voice Disorders Using High-Speed Digital Imaging. Appl. Sci. 2021, 11, 6284. [Google Scholar] [CrossRef]
- Ikuma, T.; McWhorter, A.J.; Adkins, L.; Kunduk, M. Development of Parameters towards Voice Bifurcations. Appl. Sci. 2021, 11, 5469. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Deliyski, D.D.; Hillman, R.E.; Mehta, D.D. Method for Horizontal Calibration of Laser-Projection Transnasal Fiberoptic High-Speed Videoendoscopy. Appl. Sci. 2021, 11, 822. [Google Scholar] [CrossRef] [PubMed]
- Balázsová, M.; Feistauer, M.; Horácek, J.; Kosik, A. Vibrations of Nonlinear Elastic Structure Excited by Compressible Flow. Appl. Sci. 2021, 11, 4748. [Google Scholar] [CrossRef]
- Li, S.; Scherer, R.C.; Wan, M. Effects of Vertical Glottal Duct Length on Intraglottal Pressures in the Convergent Glottis. Appl. Sci. 2021, 11, 4535. [Google Scholar] [CrossRef]
- Li, Z.; Wilson, A.; Sayce, L.; Avhad, A.; Rousseau, B.; Luo, H. Numerical and Experimental Investigations on Vocal Fold Approximation in Healthy and Simulated Unilateral Vocal Fold Paralysis. Appl. Sci. 2021, 11, 1817. [Google Scholar] [CrossRef]
- Bodaghi, D.; Xue, Q.; Zheng, X.; Thomson, S. Effect of Subglottic Stenosis on Vocal Fold Vibration and Voice Production Using Fluid–Structure–Acoustics Interaction Simulation. Appl. Sci. 2021, 11, 1221. [Google Scholar] [CrossRef]
- Schoder, S.; Maurerlehner, P.; Wurzinger, A.; Hauser, A.; Falk, S.; Kniesburges, S.; Döllinger, M.; Kaltenbacher, M. Aeroacoustic Sound Source Characterization of the Human Voice Production-Perturbed Convective Wave Equation. Appl. Sci. 2021, 11, 2614. [Google Scholar] [CrossRef]
- Lasota, M.; Sidlof, P.; Kaltenbacher, M.; Schoder, S. Impact of the Sub-Grid Scale Turbulence Model in Aeroacoustic Simulation of Human Voice. Appl. Sci. 2021, 11, 1970. [Google Scholar] [CrossRef]
- Rosenthal, J.; Haderlein, N.; Silverman, M.; Scholp, A.; Jiang, J. Using a Lossy Electrical Transmission Line Model for Optimizing Straw Phonation Configurations. Appl. Sci. 2021, 11, 3258. [Google Scholar] [CrossRef]
- Gao, Y.; Dietrich, M.; Desouza, G.N. Classification of Vocal Fatigue Using sEMG: Data Imbalance, Normalization, and the Role of Vocal Fatigue Index Scores. Appl. Sci. 2021, 11, 4335. [Google Scholar] [CrossRef]
- Devaraj, V.; Aichinger, P. Modelling of Amplitude Modulated Vocal Fry Glottal Area Waveforms Using an Analysis-by-Synthesis Approach. Appl. Sci. 2021, 11, 1990. [Google Scholar] [CrossRef]
- Yousef, A.M.; Deliyski, D.D.; Zacharias, S.R.C.; de Alarcon, A.; Orlikoff, R.F.; Naghibolhosseini, M. A hybrid Machine-Learning-Based Method for Analytic Representation of the Vocal Fold Edges during Connected Speech. Appl. Sci. 2021, 11, 1179. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.; Wendler, O.; Böhringer, D.; Gostian, A.O.; Müller, S.K.; Canziani, H.; Hesse, N.; Semmler, M.; Berry, D.A.; Kniesburges, S.; et al. Human Laryngeal Mucus from the Vocal Folds: Rheological Characterization by Particle Tracking Microrheology and Oscillatory Shear Rheology. Appl. Sci. 2021, 11, 3011. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.; Wong, K.; Aker, M.; Alhiyari, Y.; Long, J. Objective Assessment of Porcine Voice Acoustics for Laryngeal Surgical Modeling. Appl. Sci. 2021, 11, 4489. [Google Scholar] [CrossRef]
- Vojtech, J.M.; Cilento, D.D.; Luong, A.T.; Noordzij, J.P.; Diaz-Cadiz, M.; Groll, M.D.; Buckley, D.P.; Mckenna, V.S.; Noordzij, J.P.; Stepp, C. Acoustic Identification of the Voicing Boundary during Intervocalic Offsets and Onsets Based on Vocal Fold Vibratory Measures. Appl. Sci. 2021, 11, 3816. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Döllinger, M. Special Issue on Computational Methods and Engineering Solutions to Voice II. Appl. Sci. 2021, 11, 9459. https://doi.org/10.3390/app11209459
Döllinger M. Special Issue on Computational Methods and Engineering Solutions to Voice II. Applied Sciences. 2021; 11(20):9459. https://doi.org/10.3390/app11209459
Chicago/Turabian StyleDöllinger, Michael. 2021. "Special Issue on Computational Methods and Engineering Solutions to Voice II" Applied Sciences 11, no. 20: 9459. https://doi.org/10.3390/app11209459
APA StyleDöllinger, M. (2021). Special Issue on Computational Methods and Engineering Solutions to Voice II. Applied Sciences, 11(20), 9459. https://doi.org/10.3390/app11209459