Impact of the Mining Dimensions on the Stability of Backfilled Pier-Columns
Abstract
:1. Introduction
2. Geological Conditions
3. Numerical Simulation
4. Physical Experiments
5. Field Testing
6. Conclusions
- The results of both the numerical simulations and physical experiments indicated that the mining thickness has a relatively large impact on the stability of the backfilled pier-column. Each time the mining thickness increased, the stress of the pier-column was significantly enhanced, and the stability of the pier-column remarkably decreased. On the other hand, the mining width has relatively little effect on the stability of the pier-column.
- After field testing, it was obtained that the distance at which the stress of the backfilled pier-column reached stability was about 40 m, which was in close agreement with the numerical simulation results. It demonstrated that when the working face has a mining thickness of nearly 1 m and a mining width of 80 m, the backfilled pier-column can maintain good stability under the designed parameters, and it also can support the overlying strata of the goaf after mining.
- If the mining thickness or mining width of the working face changes on-site in the future, the parameters of the backfilled pier-column should be optimized and improved to ensure the stability of the pier-column.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.H.; Ji, S.W.; Ahn, J.W. Recycling of coal ash and related environmental issues in Australia. J. Korean Inst. Resour. Recycl. 2019, 28, 15–22. [Google Scholar]
- Hume, R.G.; Searle, G.K. Improved recovery in highwall mining using backfill ACARP Project C3052. Aust. Inst. Min. Metall. Pub. Ser. 1998, 98, 197–205. [Google Scholar]
- Plewa, F.; Strozik, G.; Sobota, J. Waste utilization in hydraulic backfill. BHR Group Conf. Ser. Pub. 1999, 14, 97–111. [Google Scholar]
- Bukowski, P.; Niedbalska, K. The analysis of selected properties of solid rock materials designed for shafts liquidation. Int. Multidiscip. Sci. GeoConf.-SGEM 2013, 2, 467–474. [Google Scholar]
- Kump, D. Backfill-Whatever it takes. Min. Eng. 2001, 53, 50–52. [Google Scholar]
- Moellerherm, S.; Martens, P.N. Use of copper mine tailings as paste backfill material in mining operations—Approach to minimise land occupation? In Tailings Mine Waste ’02; CRC Press: Boca Raton, FL, USA, 2002; pp. 149–153. [Google Scholar]
- Hollinderbaumer, E.W.; Mez, W. Viscosity controlled production of high-concentration backfill pastes. Aust. Inst. Min. Metall. Pub. Ser. 1998, 98, 43–47. [Google Scholar]
- Benzaazoua, M.; Bussiere, B.; Demers, I.; Aubertin, M.; Fried, E.; Blier, A. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Miner. Eng. 2008, 21, 330–340. [Google Scholar] [CrossRef]
- Behera, S.K.; Ghosh, C.N.; Mishra, K.; Mishra, D.P.; Singh, P.; Mandal, P.K.; Buragohain, J.; Sethi, M.K. Utilisation of lead-zinc mill tailings and slag as paste backfill materials. Environ. Earth Sci. 2020, 79, 389. [Google Scholar] [CrossRef]
- Nigam, G.K.; Sahu, R.K.; Sinha, M.K.; Deng, X.; Singh, R.B.; Kumar, P. Field assessment of surface runoff, sediment yield and soil erosion in the opencast mines in Chirimiri area, Chhattisgarh, India. Phys. Chem. Earth 2017, 101, 137–148. [Google Scholar] [CrossRef]
- Bazaluk, O.; Petlovanyi, M.; Lozynskyi, V.; Zubko, S.; Sai, K.; Saik, P. Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area. Sustainability 2021, 13, 834. [Google Scholar] [CrossRef]
- Basarir, H.; Bin, H.; Fourie, A.; Karrech, A.; Elchalakani, M. An adaptive neuro fuzzy inference system to model the uniaxial compressive strength of cemented hydraulic backfill. Min. Miner. Depos. 2018, 12, 1–12. [Google Scholar] [CrossRef]
- Sotskov, V.; Dereviahina, N.; Malanchuk, L. Analysis of operation parameters of partial backfilling in the context of selective coal mining. Min. Miner. Depos. 2019, 13, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Iordanov, I.; Novikova, Y.; Simonova, Y.; Yefremov, O.; Podkopayev, Y.; Korol, A. Experimental characteristics for deformation properties of backfill mass. Min. Miner. Depos. 2020, 14, 119–127. [Google Scholar] [CrossRef]
- Rybak, J.; Tyulyaeva, Y.; Kongar-Syuryun, C.; Khayrutdinov, A.M.; Akinshin, I. Geomechanical substantiation of parameters of technology for mining salt deposits with a backfill. Min. Sci. 2021, 28, 19–32. [Google Scholar]
- Zhou, H.Q.; Hou, C.J.; Sun, X.K.; Qu, Q.D.; Chen, D.J. Solid waste paste filling for none-village-relocation coal mining. J. China Univ. Min. Technol. 2004, 2, 30–34. [Google Scholar]
- Wang, Z.; Yu, W.J.; Liu, F.F. The Materialization Characteristics and Ratio of a New Soil Paste Filling Material. Adv. Civ. Eng. 2020, 2020, 6645494. [Google Scholar]
- Miao, X.X.; Zhang, J.X.; Guo, G.L. Study on waste-filling method and technology in fully-mechanized coal mining. J. Chin. Coal Soc. 2010, 35, 1–6. [Google Scholar]
- Huang, P.; Spearing, A.J.S.; Feng, J.; Jessu, K.V.; Guo, S. Effects of solid backfilling on overburden strata movement in shallow depth longwall coal mines in West China. J. Geophys. Eng. 2018, 15, 2194–2208. [Google Scholar] [CrossRef] [Green Version]
- Xuan, D.Y.; Xu, J.L.; Wang, B.L.; Teng, H. Borehole investigation of the effectiveness of grout injection technology on coal mine subsidence control. Rock Mech. Rock Eng. 2015, 48, 2435–2445. [Google Scholar] [CrossRef]
- Wang, B.L.; Xu, J.L.; Xuan, D.Y. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine. Int. J. Rock Mec. Min. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Feng, G.M.; Sun, C.D.; Wang, C.Z.; Zhou, Z. Research on goaf filling methods with super high-water material. J. Chin. Coal Soc. 2010, 35, 1963–1968. [Google Scholar]
- Zhu, W.B.; Yu, S.C.; Xuan, D.Y.; Shan, Z.J.; Xu, J.L. Experimental study on excavating strip coal pillars using caving zone backfill technology. Arab. J. Geosci. 2018, 11, 554. [Google Scholar] [CrossRef]
- Zhu, X.J.; Guo, G.L.; Liu, H.; Chen, T.; Yang, X.Y. Experimental research on strata movement characteristics of backfill–strip mining using similar material modeling. Bull. Eng. Geol. Environ. 2019, 78, 2151–2167. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.C.; Hao, Y.X. Experimental study and application of rheological properties of coal gangue-fly ash backfill slurry. Process 2020, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.L.; Zhu, W.B.; Xu, J.L.; Wen, J.H.; Liu, C.Z. A study on the bearing effect of pier-column backfilling in the goaf of a thin coal seam. Geosci. J. 2016, 20, 361–369. [Google Scholar] [CrossRef]
- Zhu, W.B.; Xu, J.M.; Xu, J.L.; Chen, D.Y.; Shi, J.X. Pier-column backfill mining technology for controlling surface subsidence. Int. J. Rock Mec. Min. 2017, 96, 58–65. [Google Scholar] [CrossRef]
- Wang, X.Z.; Xie, J.L.; Xu, J.L.; Zhu, W.B.; Wang, L.M. Effects of Coal Mining Height and Width on Overburden Subsidence in Longwall Pier-Column Backfilling. Appl. Sci. 2021, 11, 3105. [Google Scholar] [CrossRef]
- Qian, M.G.; Miao, X.X.; Xu, J.L. Key strata theory in strata control. J. Chin. Coal Soc. 1996, 21, 225–230. [Google Scholar]
Layer Number | Thickness (m) | Buried Depth (m) | Lithology | Key Stratum |
---|---|---|---|---|
28 | 127.6 | 127.6 | Loose soil | |
27 | 3.99 | 131.59 | Fine sandstone | |
26 | 2.29 | 133.88 | Mudstone | |
25 | 4.8 | 138.68 | Siltstone | |
24 | 3.35 | 142.06 | Mudstone | |
23 | 9.74 | 151.77 | Fine sandstone | |
22 | 8.25 | 160.02 | Mudstone | |
21 | 2.17 | 162.19 | Fine sandstone | |
20 | 4.28 | 166.47 | Mudstone | |
19 | 3.18 | 169.65 | Siltstone | |
18 | 8.47 | 178.12 | Fine sandstone | |
17 | 3.67 | 181.79 | Mudstone | |
16 | 4.07 | 185.86 | Siltstone | |
15 | 2.77 | 188.63 | Mudstone | |
14 | 15.82 | 204.45 | Fine sandstone | Primary key stratum (PKS) |
13 | 3.77 | 208.22 | Mudstone | |
12 | 0.8 | 209.02 | Fine sandstone | |
11 | 2.97 | 211.99 | Mudstone | |
10 | 8.06 | 220.05 | Fine sandstone | |
9 | 6.8 | 226.85 | Siltstone | Key stratum 3 (KS3) |
8 | 1.56 | 228.41 | Mudstone | |
7 | 0.7 | 229.11 | Siltstone | |
6 | 3.98 | 233.09 | Fine sandstone | Key stratum 2 (KS2) |
5 | 1.3 | 234.39 | Mudstone | |
4 | 1.27 | 235.66 | Siltstone | |
3 | 3.1 | 238.76 | Mudstone | |
2 | 1.36 | 240.12 | Fine sandstone | Key stratum 1 (KS1) |
1 | 0.83 | 240.95 | Coal seam |
Lithology | Density (kg/m3) | Tensile Strength (MPa) | Bulk Modulus (GPa) | Shear Modulus (GPa) | Cohesive Force (MPa) | Angle of Friction (°) |
---|---|---|---|---|---|---|
Top soil | 1800 | 0.02 | 0.02 | 0.014 | 0.05 | 18 |
Key stratum | 2500 | 4.50 | 4.00 | 2.40 | 5.00 | 40 |
Soft rock | 2000 | 2.20 | 2.50 | 1.30 | 3.00 | 28 |
Pier-columns | 2500 | 3.00 | 3.00 | 2.10 | 4.00 | 30 |
Coal seam | 1400 | 2.00 | 2.00 | 2.40 | 2.00 | 25 |
Floor | 2500 | 4.50 | 4.00 | 2.40 | 5.00 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Zhu, W.; Xu, J.; Wang, X.; Wang, L. Impact of the Mining Dimensions on the Stability of Backfilled Pier-Columns. Appl. Sci. 2021, 11, 9640. https://doi.org/10.3390/app11209640
Xie J, Zhu W, Xu J, Wang X, Wang L. Impact of the Mining Dimensions on the Stability of Backfilled Pier-Columns. Applied Sciences. 2021; 11(20):9640. https://doi.org/10.3390/app11209640
Chicago/Turabian StyleXie, Jianlin, Weibing Zhu, Jialin Xu, Xiaozhen Wang, and Limin Wang. 2021. "Impact of the Mining Dimensions on the Stability of Backfilled Pier-Columns" Applied Sciences 11, no. 20: 9640. https://doi.org/10.3390/app11209640
APA StyleXie, J., Zhu, W., Xu, J., Wang, X., & Wang, L. (2021). Impact of the Mining Dimensions on the Stability of Backfilled Pier-Columns. Applied Sciences, 11(20), 9640. https://doi.org/10.3390/app11209640