Edible Flowers’ Antioxidant Properties and Polyphenols Content Reflect Their Applicability for Household and Craft Tincture Production
Abstract
:Featured Application
Abstract
1. Introduction
2. Characteristics of Edible Flowers Used for Tinctures
3. Materials and Methods
3.1. Materials
3.2. Determination of Total Polyphenols
3.3. Determination of the Antioxidant Potential
3.4. Determination of Colour Parameters
3.5. Statistical Analysis
4. Results and Discussion
4.1. Tinctures of Wild Rose Flowers (Rosa canina L.)
4.2. Tinctures of Elderberry Flowers (Sambucus niger L.)
4.3. Tinctures of Marigold Flowers (Calendula officinalis L.)
4.4. The Cornflower Tincture (Centaurea cyanus L.)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The flavor of fruit spirits and fruit liqueurs: A review. Flavour Fragr. J. 2015, 30, 197–207. [Google Scholar] [CrossRef]
- Sznitowska, M. Applied Pharmacy. Drug Form Technology; PZWL: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- Crupi, M.L.; Costa, R.; Dugo, P.; Dugo, G.; Mondello, L. A comprehensive study on the chemical composition and aromatic characteristics of lemon liquor. Food Chem. 2007, 105, 771–783. [Google Scholar] [CrossRef]
- Egea, T.; Signorini, M.A.; Bruschi, P.; Rivera, D.; Obón, C.; Alcaraz, F.; Palazón, J.A. Spirits and liqueurs in European traditional medicine: Their history and ethnobotany in Tuscany and Bologna (Italy). J. Ethnopharmacol. 2015, 175, 241–255. [Google Scholar] [CrossRef]
- De Jesus Filho, M.; do Carmo, L.B.; Della Lucia, S.M.; Saraiva, S.H.; Costa, A.V.; Teixeira, L.J.Q. Banana liqueur: Optimization of the alcohol and sugar contents, sensory profile and analysis of volatile compounds. LWT 2018, 97, 31–38. [Google Scholar] [CrossRef]
- Polak, J.; Bartoszek, M. The study of antioxidant capacity of varieties of nalewka, a traditional Polish fruit liqueur, using EPR, NMR and UV–vis spectroscopy. J. Food Compos. Anal. 2015, 40, 114–119. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur—Cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, M.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef]
- Sõukand, R.; Pieroni, A.; Biró, M.; Dénes, A.; Dogan, Y.; Hajdari, A.; Kalle, E.; Reade, B.; Mustafa, B.; Nedelcheva, A.; et al. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J. Ethnopharmacol. 2015, 170, 284–296. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Schmitzer, V.; Mikulic-Petkovsek, M.; Stampar, F. Traditional rose liqueur—A pink delight rich in phenolics. Food Chem. 2019, 272, 434–440. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of Other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl Alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing. Regulation (EC) No 110/2008. Available online: http://data.europa.eu/eli/reg/2019/787/oj (accessed on 20 June 2021).
- Grunert, K.G.; Hieke, S.; Juhl, H.J. Consumer wants and use of ingredient and nutrition information for alcoholic drinks: A cross-cultural study in six EU countries. Food Qual. Prefer. 2018, 63, 107–118. [Google Scholar] [CrossRef]
- Mohebitabar, S.; Shirazi, M.; Bioos, S.; Rahimi, R.; Malekshahi, F.; Nejatbakhsh, F. Therapeutic efficacy of rose oil: A comprehensive review of clinical evidence. Avicenna J. Phytomed. 2017, 7, 206–213. [Google Scholar]
- Safia, A.; Aamir, Z.; Iqbal, A.; Mohamood, Z.A. Assessment of rose water and evaluation of antioxidant and anti-inflammatory properties of a rose water based cream formulation. Int. J. Pharm. Clin. Res. 2019, 11, 43–48. [Google Scholar]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the phenolic compounds of Rosa rugosa petals. J. Food Qual. 2017. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 2014, 94, 560–567. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Najgebauer-Lejko, D. The content of selected phytochemicals and in vitro antioxidant properties of rose hip (Rosa canina L.) tinctures. NFS J. 2020, 21, 50–56. [Google Scholar] [CrossRef]
- Viapiana, A.; Wesołowski, M. The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Młynarczyk, K.; Walkowiak-Tomczyk, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Sambucus nigra L. fruits and flowers: Chemical composition and related bioactivities. Food Rev. Int. 2020. [Google Scholar] [CrossRef]
- Mahboubi, M. Sambucus nigra (black elder) as alternative treatment for cold and flu. Adv. Tradit. Med. 2020. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur. J. Med. Chem. 2019, 176, 68–91. [Google Scholar] [CrossRef]
- Mishra, A.; Mishra, A.; Chattopadhyay, P. Assessment of in vitro sun protection factor of Calendula officinalis, L. (Asteraceae) essential oil formulation. J. Young Pharm. 2012, 4, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Efstratiou, E.; Hussain, A.I.; Nigam, P.S.; Moore, J.E.; Ayub, M.A.; Rao, J.R. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement. Ther. Clin. Pract. 2012, 18, 173–176. [Google Scholar] [CrossRef]
- Benvenuti, S.; Bartolotti, E.; Maggini, R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016, 199, 170–177. [Google Scholar] [CrossRef]
- Manzor, M.; Singh, J.; Gani, A.; Noor, N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. J. 2021. [Google Scholar] [CrossRef]
- Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Koc, K.; Ekiert, H. Pot marigold (Calendula officinalis L.)—A position in classical phytotherapy and newly documented activities. Acta Sci. Pol. Hortorum Cultus 2020, 19, 47–61. [Google Scholar] [CrossRef]
- Andersen, F.A.; Bergfeld, W.F.; Belsito, B.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W. Final report of the cosmetic ingredient review expert panel amended safety assessment of Calendula officinalis–derived cosmetic ingredients. Int. J. Toxicol. 2010, 29, 221S–243S. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Edible flowers with the common name “marigold”: Their therapeutic values and processing. Trends Food Sci. Technol. 2019, 89, 76–87. [Google Scholar] [CrossRef]
- Takeda, K.; Osakabe, A.; Saito, S.; Furuyama, D.; Tomita, A.; Kojima, Y.; Yamadera, M.; Sakuta, M. Components of protocyanin, a blue pigment from the blue flowers of Centaurea cyanus. Phytochemistry 2005, 66, 1607–1613. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriza, C.L. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Adamczak, A.; Forycka, A.; Buchwald, W. Skład herbatek owocowych na polskim rynku artykułów spożywczych [Composition of fruit teas available on the Polish food market]. Post Fitoter 2015, 4, 216–222. [Google Scholar]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity using the DPPH free radical method. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- CIE DS 014-4.3/E:2007. Colorimétrie—Part 4: CIE 1976 L*a*b* COLOUR SPACE. Available online: http://www.unife.it/scienze/astro-fisica/insegnamenti/ottica-applicata/materiale-didattico/colorimetria/CIE%20DS%2001443 (accessed on 27 October 2021).
- Chen, G.L.; Chen, S.G.; Xie, Y.Q.; Chen, F.; Zhao, Y.Y.; Luo, C.X.; Gao, Y.Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Xiao, Y.; Fu, N.L. Antioxidant capacities and total phenolic contents of 30 flowers. Ind. Crops Prod. 2018, 111, 430–445. [Google Scholar] [CrossRef]
- Sokół-Łętowska, A.; Kucharska, A.Z.; Wińska, K.; Szumny, A.; Nawirska-Olszańska, A.; Mizgier, P.; Wyspiańska, D. Composition and antioxidant activity of red fruit liqueurs. Food Chem. 2014, 157, 533–539. [Google Scholar] [CrossRef]
- Sidor, A.; Gamza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, P.; Silva, A.M.; Nunes, F.M. Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: A three-year study. Food Chem. 2020, 302, 125366. [Google Scholar] [CrossRef]
- Vujanović, M.; Majkić, T.; Zengin, G.; Beara, I.; Tomović, V.; Šojić, B.; Đurović, S.; Radojković, M. Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Adv. 2020, 10, 44805–44814. [Google Scholar] [CrossRef]
- Ćetković, G.S.; Djilas, S.M.; Čanadanović-Brunet, J.M.; Tumbas, V.T. Antioxidant properties of marigold extracts. Food Res. Int. 2004, 37, 643–650. [Google Scholar] [CrossRef]
- Butnariu, M.; Coradini, C.Z. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem. Cent. J. 2012, 6, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Ercetin, T.; Senol, F.S.; Orhan, I.E.; Toker, G. Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L. Ind. Crops. Prod. 2012, 36, 203–208. [Google Scholar] [CrossRef]
- Dorozko, J.; Kunkulberga, D.; Sivicka, I.; Kruma, Z. The Influence of Various Drying Methods on the Quality of Edible Flower Petals. In Proceedings of the 13th Baltic Conference on Food Science FoodBalt 2019 and East European Congress on Food NEEFood. University of Life Sciences and Technologies, Jelgala, Latvia, 2–3 May 2019; Conference Materials. pp. 182–187. [Google Scholar] [CrossRef]
- Kishimoto, S.; Maoka, T.; Sumitomo, K.; Ohmiya, A. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci. Biotechnol. Biochem. 2005, 69, 2122–2128. [Google Scholar] [CrossRef] [Green Version]
- Escher, G.B.; Santosa, J.S.; Rosso, N.D.; Marques, M.B.; Azevedo, L.; do Carmo, M.A.V.; Daguer, H.; Molognoni, L.; do Prado-Silva, L.; Sant’Ana, A.S.; et al. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/ cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food Chem. Toxicol. 2018, 118, 439–453. [Google Scholar] [CrossRef]
- Różyło, R.; Szymańska-Chargot, M.; Gawlik-Dziki, U.; Dziki, D. Spectroscopic, mineral, and antioxidant characteristics of blue colored powders prepared from cornflower aqueous extracts. Food Chem. 2021, 346, 128889. [Google Scholar] [CrossRef]
- Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and ethnobotanical dermatology practices in Romania and other Eastern European countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s socjety. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogl, S.; Picker, P.; Mihaly-Bison, J.; Fakhrudin, N.; Atanasov, A.G.; Heiss, E.H.; Wawrosch, C.; Reznicek, G.; Dirsch, V.M.; Saukel, J.; et al. Ethnopharmacological in vitro studies on Austria’s folk medicine—An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 2013, 149, 750–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th Edition. Available online: https://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 21 August 2021).
- Imark, C.; Kneubühl, M.; Bodmer, S. Occurrence and activity of natural antioxidants in herbal spirits. Innov. Food Sci. Emerg. Technol. 2001, 1, 239–243. [Google Scholar] [CrossRef]
- Kumari, P.; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods. 2021, 78, 104375. [Google Scholar] [CrossRef]
Tincture Name | Plant Organ | Tincture Composition | Ethanol Contents | Sugar Contents | Flower Raw Material (g/100 mL) |
---|---|---|---|---|---|
Home tincture from wild rose flowers Rosa canina L. | Rose petals | rose petals, alcohol 40%, sugar, water | 27.5% | 200 g/L | 1.75 |
Craft tincture from wild rose flowers R. canina L. | No information on the label | No information—protected formula | 30% | No information—protected formula | No information—protected formula |
Home tincture from elderberry flowers Sambucus niger L. | Elderberry flowers | elderberry flowers, alcohol 40%, lemon juice, | 40% | None | 18.6 |
Home tincture from elderberry flowers S. niger L. | Elderberry flowers | elderberry flowers, alcohol 40%, lemon juice, sugar, water | 28% | 350 g/L | 9.3 |
Craft tincture from elderberry flowers S. niger L. | No information | No information—protected formula | 32% | No information—protected formula | No information—protected formula |
Home tincture from dried marigold flowers Calendula off. L. | Dried marigold flowers | marigold flowers, alcohol 40% | 40% | None | 10 |
Home tincture from dried marigold flowers Calendula off. L. with orange juice | Dried marigold flowers | marigold flowers, alcohol 40%, orange juice, | 38% | None | 3.33 |
Home tincture from fresh marigold flowers Calendula off. L. | Fresh marigold flowers | marigold flowers, alcohol 40% | 38% | None | 10 |
Home tincture from cornflower flowers Centaurea cyanus L. | Dried cornflower petals | cornflower petals, alcohol 95%, water | 38% | None | 2.96 |
TP (mg GAE/100 mL) | TP (mg GAE/g Flowers) | AADPPH [%] | L* | a* | b* | |
---|---|---|---|---|---|---|
Tinctures of wild rose flowers Rosa canina L. | ||||||
Home | 15.72 ± 0.16 a,D | 8.98 ± 0.09 | 69.77 ± 10.16 a,A,B | 21.18 ± 0.01 a,B | 0.59 ± 0.08 a,D | 4.29 ± 0.05 a,B |
Craft | 46.78 ± 0.75 b,G | no data | 81.87 ± 7.71 a,A | 21.00 ± 0.33 a,B | 1.66 ± 0.24 b,B | 4.25 ± 0.46 a,B |
U M-W 1 statistics | z = −2.16 | z = −1.01 | z = 0.14 | z = −2.16 | z = 0.14 | |
p = 0.03 * | p = 0.31 | p = 0.88 | p = 0.03 * | p = 0.88 | ||
Tinctures of elderberry flowers Sambucus niger L. | ||||||
Home | 27.19 ± 0.24 c,B | 1.46 ± 0.01 | 72.60 ± 9.46 a,A,B | 21.73 ± 0.01 a,D | 1.32 ± 0.05 c,C | 3.75 ± 0.02 b,E |
Craft | 13.59 ± 0.14 a,C | no data | 87.83 ± 4.61 b,A | 26.16 ± 0.02 c,F | −0.45 ± 0.02 a,A | 1.55 ± 0.01 a,C |
Home with added sugar | 17.23 ± 0.56 b,E | 1.85 ± 0.06 | 81.25 ± 6.78 a,b,A,B | 23.98 ± 0.01 b,C | 0.33 ± 0.04 b,D | 5.25 ± 0.04 c,F |
K-W 2 statistics | z = 9.85 | z = 5.54 | z = 9.91 | z = 9.91 | z = 10.20 | |
p = 0.007 * | p = 0.06 | p = 0.007 * | p = 0.007 * | p = 0.006 * | ||
Tinctures of marigold flowers Calendula off. L. | ||||||
Home craft from dried flowers | 27.08 ± 0.33 c,B | 2.71 ± 0.03 | 41.23 ± 19.18 a,C | 20.00 ± 0.01 a,A | 1.65 ± 0.02 c,B | 2.65 ± 0.01 a,A |
Home craft from dried flowers with orange juice | 25.89 ± 0.22 b,F | 7.77 ± 0.06 | 56.81 ± 15.48 a,B,C | 20.03 ± 0.01 a,A | 1.51 ± 0.06 b,B,C | 2.88 ± 0.05 b,A |
Home craft from fresh flowers | 10.72 ± 0.05 a,A | 1.07 ± 0.01 | 40.85 ± 6.91 a,C | 22.88 ± 0.02 b,E | −0.23 ± 0.03 a,A | 7.15 ± 0.02 c,G |
K-W 2 statistics | z = 9.85 | z =1.85 | z = 9.91 | z = 9.85 | z = 9.88 | |
p = 0.007 * | p = 0.40 | p = 0.007 * | p = 0.007 * | p = 0.007 * | ||
Tinctures of cornflower flowers Centaurea cyanus L. | ||||||
Home craft of dried petals | 9.93 ± 0.45 A | 3.36 ± 0.15 | 9.49 ± 2.20 D | 23.73 ± 0.01 C | −0.26 ± 0.09 A | 3.34 ± 0.02 D |
Kruskal-Wallis statistics for all products | ||||||
z = 34.32 | z =29.26 | z = 34.32 | z = 34.35 | z = 34.98 | ||
p = 0.000 * | p = 0.0003 * | p = 0.000 * | p = 0.0001 * | p = 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmiechowska, M.; Dmowski, P.; Skowierzak, L. Edible Flowers’ Antioxidant Properties and Polyphenols Content Reflect Their Applicability for Household and Craft Tincture Production. Appl. Sci. 2021, 11, 10095. https://doi.org/10.3390/app112110095
Śmiechowska M, Dmowski P, Skowierzak L. Edible Flowers’ Antioxidant Properties and Polyphenols Content Reflect Their Applicability for Household and Craft Tincture Production. Applied Sciences. 2021; 11(21):10095. https://doi.org/10.3390/app112110095
Chicago/Turabian StyleŚmiechowska, Maria, Przemysław Dmowski, and Larysa Skowierzak. 2021. "Edible Flowers’ Antioxidant Properties and Polyphenols Content Reflect Their Applicability for Household and Craft Tincture Production" Applied Sciences 11, no. 21: 10095. https://doi.org/10.3390/app112110095