Hibiscus rosa-sinensis as Flavoring Agent for Alcoholic Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Beverages
2.2.1. Beer Samples
- (1)
- 45 °C for 10 min (protease enzymes react to hydrolyze low weight protein as nourishment for yeast);
- (2)
- 62 °C for 20 min (β-amylase activity, pH 5.0–5.5, maximum activity);
- (3)
- 66 °C for 40 min (β-amylase activity, pH 5.0–5.5, enzymatic synergy point between amylases); and
- (4)
- 78 °C for 5 min (enzymatical inactivation phase).
2.2.2. Liqueur Sample
- Distillation: a discontinuous distillation was performed to separate the ethyl alcohol from the other desirable substances. This production method is usually used to produce high-end spirits. In this case, the distillation process reached the maximum efficiency of 18–20%.
- Rectification of the heart of the distilled product: during this phase, the ethyl alcohol undergoes a 2% reduction. The resulting product was then separated in three fractions: head, heart and tail. The head was eliminated using the first distilled liquid. It presented volatile substances with a lower boiling point than ethanol. The body or heart is the central portion of the product that contains the highest amount of ethyl alcohol and the lowest of impurities. Lastly, the tail was the final part of the product, containing volatile compounds boiling at T over 100° C. In the present case, the rectification phase was repeated three times.
- Addition of hibiscus flowers and maceration: dried hibiscus flowers (5 g; 22% dry weight) were added to the alcoholic solution (80% w/w) in a jar, and then left to macerate for 10 days, at 10° C.
- Ethanol content reduction and filtering: the exhausted flowers were removed, and the product was filtered. Then, the reduction of the alcoholic title was performed with a solution of 50 g of sugar in 1 L of distilled water.The cuts of the mixture were performed as below:
- -
- 1 L alcoholic mixture (80% alc.) + 100 mL cutting mixture (1 L H2O + 50 g C6H12O6): 50% alcoholic title.
- -
- 50% alc. + 40 mL cutting mixture: 38% alcoholic title.
At the end of each alcoholic cut, the mixture was left to rest in the refrigerator at 4 °C for 24 h and filtered with a bacteriology filter to remove any precipitate. - Bottling and priming: the alcoholic mixture was then bottled and left in refrigerator to preserve the color from photo-oxidation. After 20 days, a final filtration was performed to remove any precipitates formed following the laagering of the product. The cold allowed the liqueur to refine, reducing the most pungent odors and making the mixture clearer.
2.3. Phytochemical Investigation
2.3.1. Essential Oil Hydrodistillation
2.3.2. Headspace Solid Phase Microextraction Analysis
2.3.3. Gas Chromatography–Mass Spectrometry Analyses
2.4. Sensorial Analyses
2.4.1. Protocol for Sensory Analysis and Product Presentation
2.4.2. QDA Analysis
2.5. Biochemical Analyses
Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Essential Oils Chemical Composition
3.2. Headspaces Chemical Composition
3.2.1. Plant Materials
3.2.2. Beverages
Beer Sample
Liqueur Sample
3.3. Multivariate Statistical Analysis
3.4. Sensorial Analysis
3.5. Biochemical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willaert, R. Beverages: The Beer Brewing Process: Wort Production and Beer Fermentation. In Handbook of Food Products Manufacturing; Hui, Y.H., Chandan, R.C., Clark, S., Cross, N.A., Dobbs, J.C., Hurst, W.J., Nollet, L.M.L., Shimoni, E., Smith, E.B., Surapat, S., et al., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006; Section V; Volume 1, ISBN 9780470049648. [Google Scholar]
- Da Costa Jardim, C.; de Souza, D.; Cristina Kasper Machado, I.; Massochin Nunes Pinto, L.; de Souza Ramos, R.; Garavaglia, J. Sensory Profile, Consumer Preference and Chemical Composition of Craft Beers from Brazil. Beverages 2018, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- Estela-Escalante, W.D.; Rosales-Mendoza, S.; Moscosa-Santillán, M.; González-Ramírez, J.E. Evaluation of the fermentative potential of Candida zemplinina yeasts for craft beer fermentation. J. Inst. Brew. 2016, 122, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Aquilani, B.; Laureti, T.; Poponi, S.; Secondi, L. Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Qual. Prefer. 2015, 41, 214–224. [Google Scholar] [CrossRef]
- Guido, L.F. Brewing and Craft Beer. Beverages 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Baigts-Allende, D.K.; Pérez-Alva, A.; Ramírez-Rodrigues, M.A.; Palacios, A.; Ramírez-Rodrigues, M.M. A comparative study of polyphenolic and amino acid profiles of commercial fruit beers. J. Food Compos. Anal. 2021, 100, 103921. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Iannone, M.; Cinque, G.; Marianelli, A.; Pistelli, L.; Flamini, G. “Hemping” the drinks: Aromatizing alcoholic beverages with a blend of Cannabis sativa L. flowers. Food Chem. 2020, 325, 126909. [Google Scholar] [CrossRef]
- Vera, L.; Aceña, L.; Guasch, J.; Boqué, R.; Mestres, M.; Busto, O. Characterization and classification of the aroma of beer samples by means of an MS e-nose and chemometric tools. Anal. Bioanal. Chem. 2011, 399, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P. Beer flavor. In Beer; Bamforth, C., Russell, I., Stewart, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 61–83. ISBN 9780126692013. [Google Scholar]
- Pistelli, L.; Ferri, B.; Cioni, P.L.; Koziara, M.; Agacka, M.; Skomra, U. Aroma profile and bitter acid characterization of hop cones (Humulus lupulus L.) of five healthy and infected Polish cultivars. Ind. Crops Prod. 2018, 124, 653–662. [Google Scholar] [CrossRef]
- Langstaff, B.S.A.; Lewis, M.J. The mouthfeel of beer-A Review. J. Inst. Brew. 1993, 99, 31–37. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.D.; Godbole, A.; Dunshea, F.R. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.R.; Moors, P.; Wagemans, J.; Spence, C. The influence of color on the consumer’s experience of beer. Front. Psychol. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Sivaraman, C.M.; Saju, F. Medicinal value of Hibiscus rosa sinensis: A review. Int. J. Pharmacogn. Chem. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Missoum, A. An update review on Hibiscus rosa sinensis phytochemistry and medicinal uses. J. Ayurvedic Herb. Med. 2018, 4, 135–146. [Google Scholar] [CrossRef]
- Jadhav, V.; Thorat1, R.M.; Sathe, N.; Kadam, V. Hibiscus rosa sinenis Linn–“Rudrapuspa”: A Review. J. Pharm. Res. 2009, 2, 1168–1173. [Google Scholar]
- Rengarajan, S.; Melanathuru, V.; Govindasamy, C.; Chinnadurai, V.; Elsadek, M.F. Antioxidant activity of flavonoid compounds isolated from the petals of Hibiscus rosa sinensis. J. King Saud Univ.Sci. 2020, 32, 2236–2242. [Google Scholar] [CrossRef]
- Aron, P.M.; Shellhammer, T.H. A Discussion of Polyphenols in Beer Physical and Flavour Stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Anokwuru, P.C.; Esiaba, I.; Ajbaye, O.; Adesuyi, A.O. Polyphenolic Content and Antioxidant Activity of Hibiscus sabdariffa Calyx. Res. J. Med. Plant 2011, 5, 557–566. [Google Scholar] [CrossRef]
- Oladokun, O.; Tarrega, A.; James, S.; Smart, K.; Hort, J.; Cook, D. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 2016, 205, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Medoro, C.; Cianciabella, M.; Camilli, F.; Magli, M.; Gatti, E.; Predieri, S. Sensory Profile of Italian Craft Beers, Beer Taster Expert versus Sensory Methods: A Comparative Study. Food Nutr. Sci. 2016, 07, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Carol Stream, Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1982; Volume 26. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. [Google Scholar]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics soft-ware package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Nance, M.R.; Setzer, W.N. Volatile components of aroma hops (Humulus lupulus L.) commonly used in beer brewing. J. Brew. Distill. 2011, 2, 16–22. [Google Scholar]
- Forteschi, M.; Porcu, M.C.; Fanari, M.; Zinellu, M.; Secchi, N.; Buiatti, S.; Passaghe, P.; Bertoli, S.; Pretti, L. Quality assessment of “Cascade” Hop (Humulus lupulus L.) grown in Sardinia. Eur. Food Res. Technol. 2019, 245, 863–871. [Google Scholar] [CrossRef]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habschied, K.; Lončarić, A.; Mastanjević, K. Screening of Polyphenols and Antioxidative Activity in Industrial Beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Habschied, K.; Košir, I.J.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer Polyphenols—Bitterness, Astringency, and Off-Flavors. Beverages 2021, 7, 38. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
Odor Attribute | |
Overall intensity | Overall odor intensity perceived |
Malty | Aromatic note of fermented cereals similar to fresh malt cooked in the oven |
Hoppy | Typical odor of fresh hop |
Floral | Aromatic note resembling flowers |
Fruity | Aromatic note resembling fruits |
Spicy | Aromatic note resembling spices |
Honey | Aromatic sweet note resembling honey |
Roasted | Aromatic note resembling caramel, bread crust, hazelnuts and browning of sugars |
Visual attribute | |
Foam persistency | Visual persistency of foam in the glass |
Turbidity | Presence of suspended particles that confer the beer an opaque appearance |
Gustatory attribute | |
Overall intensity | Overall taste intensity perceived |
Sweet | Taste of sugar |
Bitter | Taste of substances such as caffeine or quinine |
Sour | Taste of acidic substances such as citric acid |
Alcohol | Flavor sensation of alcohol |
Malty | Flavor sensation of malt |
Hoppy | Flavor sensation of hop |
Floral | Flavor sensation resembling flowers |
Fruity | Flavor sensation resembling fruits |
Spicy | Flavor sensation resembling spices |
Honey | Flavor sensation resembling honey |
Roasted | Flavor sensation resembling caramel, bread crust, hazelnuts and browning of sugars |
Texture attribute | |
Fullness | Fullness of beer perceived in mouth |
Level of carbonation | Attribute resembling the pungency intensity of carbon dioxide |
Astringency | In-mouth dry sensation |
Compounds | l.r.i 1 | Class. | Relative Abundance (%) ± SD |
---|---|---|---|
β-pinene | 977 | mh | 0.3 ± 0.12 |
myrcene | 991 | mh | 15.6 ± 6.66 |
linalool | 1101 | om | 0.1 ± 0.11 |
nonanal | 1105 | nt | 0.1 ± 0.12 |
2-undecanone | 1294 | nt | 0.3 ± 0.01 |
methyl 4-decenoate | 1312 | nt | 0.6 ± 0.05 |
methyl geranate | 1324 | om | 0.5 ± 0.10 |
α-copaene | 1376 | sh | 0.3 ± 0.00 |
geranyl acetate | 1385 | om | 0.4 ± 0.04 |
β-caryophyllene | 1419 | sh | 9.0 ± 0.03 |
β-copaene | 1429 | sh | 0.1 ± 0.10 |
trans-α-bergamotene | 1436 | sh | 0.3 ± 0.02 |
α-humulene | 1453 | sh | 28.9 ± 0.04 |
(E)-β-farnesene | 1458 | sh | 3.8 ± 0.12 |
trans-cadina-1(6),4-diene | 1474 | sh | 0.2 ± 0.06 |
β-chamigrene | 1485 | sh | 0.5 ± 0.17 |
γ-muurolene | 1477 | sh | 1.0 ± 0.08 |
α-amorphene | 1482 | sh | 0.2 ± 0.00 |
β-selinene | 1486 | sh | 2.2 ± 0.26 |
α-selinene | 1495 | sh | 2.3 ± 0.27 |
2-tridecanone | 1496 | nt | 0.8 ± 0.19 |
epizonarene | 1500 | sh | 0.2 ± 0.02 |
α-muurolene | 1501 | sh | 0.4 ± 0.07 |
(E,E)-α-farnesene | 1509 | sh | 0.4 ± 0.06 |
trans-γ-cadinene | 1514 | sh | 1.8 ± 0.24 |
δ-cadinene | 1524 | sh | 2.8 ± 0.26 |
cubenene | 1533 | sh | 0.2 ± 0.02 |
α-cadinene | 1537 | sh | 0.2 ± 0.04 |
α-calacorene | 1543 | sh | 0.2 ± 0.04 |
elemol | 1550 | os | 0.2 ± 0.07 |
caryophyllene alcohol | 1563 | os | 0.3 ± 0.01 |
caryophyllene oxide | 1582 | os | 1.7 ± 0.33 |
isoaromadendrene epoxide | 1586 | os | 1.5 ± 0.31 |
epi-globulol | 1590 | os | 0.3 ± 0.33 |
humulene oxide II | 1608 | os | 5.2 ± 0.99 |
humulane-1-6-dien-3-ol | 1613 | os | 0.3 ± 0.12 |
1,10-di-epi-cubenol | 1615 | os | 0.2 ± 0.05 |
1-epi-cubenol | 1627 | os | 1.2 ± 0.26 |
caryophylla-4(14),8(15)-dien-5-ol | 1633 | os | 0.7 ± 0.15 |
T-cadinol | 1641 | os | 1.4 ± 0.22 |
T-muurolol | 1646 | os | 0.2 ± 0.05 |
α-cadinol | 1654 | os | 1.5 ± 0.18 |
14-hydroxy-9-epi-(E)-caryophyllene | 1665 | os | 1.0 ± 0.24 |
aromadendrene epoxide II | 1680 | os | 0.6 ± 0.08 |
2-pentadecanone | 1699 | nt | 0.2 ± 0.04 |
(E,E)-farnesol | 1723 | os | 0.5 ± 0.10 |
m-camphorene | 1952 | dh | 0.3 ± 0.03 |
hexadecanoic acid | 1963 | nt | 3.1 ± 0.36 |
phytol | 2112 | od | 0.3 ± 0.02 |
Total identified (%) | 94.4 ± 1.03 | ||
Monoterpene hydrocarbons (mh) | 16.0 ± 6.78 | ||
Oxygenated monoterpenes (om) | 1.0 ± 0.03 | ||
Sesquiterpene hydrocarbons (sh) | 55.2 ± 1.82 | ||
Oxygenated sesquiterpenes (os) | 16.7 ± 3.48 | ||
Diterpene hydrocarbons (dh) | 0.3 ± 0.03 | ||
Oxygenated diterpenes (od) | 0.3 ± 0.02 | ||
Other non-terpene derivates (nt) | 5.0 ± 0.40 | ||
EO hydrodistillation yield (% w/w) | 0.3 ± 0.04 |
Compounds | l.r.i. 1 | Class. | Relative Abundance (%) ± SD | |
---|---|---|---|---|
SPME Hop | SPME Hibiscus | |||
acetic acid | 603 | nt | - 2 | 2.0 ± 0.06 |
2-methylbutanal | 659 | nt | - | 0.1 ± 0.01 |
pentanal | 699 | nt | - | 0.3 ± 0.06 |
prenol | 775 | nt | 0.1 ± 0.01 | - |
1,3-butanediol | 778 | nt | - | 2.7 ± 0.36 |
prenal | 782 | nt | 0.1 ± 0.02 | - |
hexanal | 809 | nt | - | 2.4 ± 0.07 |
2,3-butanediol | 843 | nt | - | 5.6 ± 0.30 |
1-hexanol | 903 | nt | - | 0.8 ± 0.11 |
heptanal | 907 | nt | - | 1.3 ± 0.08 |
isobutyl isobutyrate | 910 | nt | 0.1 ± 0.01 | - |
methyl hexanoate | 925 | nt | 0.3 ± 0.01 | - |
α-pinene | 933 | mh | 0.6 ± 0.04 | 1.7 ± 0.04 |
benzaldheyde | 959 | nt | - | 0.3 ± 0.00 |
pentyl propanoate | 969 | nt | 0.5 ± 0.07 | - |
hexanoic acid | 979 | nt | - | 0.3 ± 0.13 |
β-pinene | 977 | mh | 2.7 ± 0.07 | 0.5 ± 0.12 |
6-methyl-5-hepten-2-one | 986 | nt | - | 1.0 ± 0.07 |
myrcene | 991 | mh | 64.9 ± 2.19 | 1.2 ± 0.06 |
octanal | 1003 | nt | - | 0.9 ± 0.05 |
α-phellandrene | 1006 | mh | 0.1 ± 0.02 | - |
isoamyl isobutanoate | 1015 | nt | 0.3 ± 0.04 | - |
2-metylbutyl isobutyrate | 1016 | nt | 0.5 ± 0.06 | - |
α-terpinene | 1017 | mh | 0.1 ± 0.01 | - |
methyl heptanoate | 1023 | nt | 0.7 ± 0.02 | - |
p-cymene | 1025 | mh | - | 2.1 ± 0.33 |
3-ethyl-1-hexanol | 1027 | nt | - | 1.0 ± 0.20 |
limonene | 1029 | mh | 2.1 ± 0.09 | 2.4 ± 0.35 |
1,8-cineole | 1031 | om | - | 19.1 ± 2.67 |
(Z)-β-ocimene | 1036 | mh | 0.2 ± 0.02 | - |
phenylacetaldehyde | 1043 | nt | - | 0.4 ± 0.04 |
(E)-β-ocimene | 1047 | mh | 0.8 ± 0.05 | - |
γ-terpinene | 1058 | mh | 0.1 ± 0.00 | 0.6 ± 0.15 |
1-octanol | 1069 | nt | - | 0.3 ± 0.07 |
2,3,5,6-tetramethyl pyrazine | 1088 | pyr | - | 0.6 ± 0.02 |
2-nonanone | 1092 | nt | 0.2 ± 0.01 | 0.2 ± 0.03 |
linalool | 1101 | om | 0.5 ± 0.03 | 1.1 ± 0.02 |
nonanal | 1105 | nt | - | 3.3 ± 0.17 |
phenylethyl alcohol | 1114 | nt | - | 0.7 ± 0.09 |
methyl octanoate | 1129 | nt | 0.3 ± 0.02 | - |
camphor | 1145 | om | - | 0.4 ± 0.12 |
citronellal | 1153 | om | - | 0.5 ± 0.01 |
borneol | 1165 | om | - | 0.6 ± 0.07 |
menthol | 1173 | om | - | 1.0 ± 0.04 |
4-terpineol | 1177 | om | - | 1.1 ± 0.13 |
α-terpineol | 1191 | om | - | 1.2 ± 0.17 |
decanal | 1206 | nt | - | 1.1 ± 0.13 |
carvone | 1244 | om | - | 0.8 ± 0.11 |
nonanoic acid | 1269 | nt | - | 0.8 ± 0.13 |
thymol | 1292 | om | - | 0.3 ± 0.04 |
2-undecanone | 1294 | nt | 0.1 ± 0.00 | - |
carvacrol | 1302 | om | - | 1.2 ± 0.04 |
methyl 4-decenoate | 1312 | nt | 0.3 ± 0.03 | - |
methyl geranate | 1324 | om | 0.2 ± 0.02 | - |
α-terpinyl acetate | 1350 | om | - | 0.9 ± 0.08 |
neryl acetate | 1365 | om | - | 0.6 ± 0.08 |
α-ylangene | 1372 | sh | 0.2 ± 0.03 | - |
α-copaene | 1376 | sh | 0.6 ± 0.08 | 0.3 ± 0.05 |
β-caryophyllene | 1419 | sh | 6.6 ± 0.32 | 7.5 ± 0.61 |
β-copaene | 1429 | sh | 0.2 ± 0.02 | - |
trans-α-bergamotene | 1436 | sh | 0.3 ± 0.03 | 0.7 ± 0.11 |
aromadendrene | 1442 | sh | - | 0.4 ± 0.11 |
α-humulene | 1453 | sh | 12.0 ± 1.39 | 10.1 ± 0.78 |
(E)-β-farnesene | 1458 | sh | 1.5 ± 0.08 | 2.6 ± 0.00 |
γ-muurolene | 1477 | sh | 0.3 ± 0.03 | 0.7 ± 0.06 |
β-selinene | 1486 | sh | 0.6 ± 0.04 | 1.4 ± 0.07 |
α-selinene | 1495 | sh | 0.7 ± 0.08 | 1.1 ± 0.01 |
α-muurolene | 1500 | sh | 0.1 ± 0.05 | 0.3 ± 0.04 |
β-bisabolene | 1509 | sh | - | 0.1 ± 0.01 |
trans-γ-cadinene | 1514 | sh | 0.3 ± 0.04 | 0.9 ± 0.11 |
δ-cadinene | 1524 | sh | 0.4 ± 0.12 | 1.9 ± 0.26 |
α-cadinene | 1537 | sh | - | 0.4 ± 0.03 |
spathulenol | 1577 | os | - | 1.0 ± 0.02 |
caryophyllene oxide | 1582 | os | - | 1.0 ± 0.06 |
humulene oxide II | 1608 | os | - | 0.9 ± 0.02 |
γ-eudesmol | 1631 | os | - | 0.2 ± 0.01 |
hexahydrofarnesylacetone | 1845 | ac | - | 4.9 ± 0.23 |
Total identified (%) | 99.5 ± 0.05 | 99.7 ± 0.03 | ||
Monoterpene hydrocarbons (mh) | 71.6 ± 2.2 | 8.4 ± 0.73 | ||
Oxygenates monoterpenes (om) | 0.7 ± 0.05 | 28.7 ± 1.98 | ||
Sesquiterpene hydrocarbons (sh) | 23.7 ± 2.14 | 28.6 ± 2.21 | ||
Oxygenated sesquiterpens (os) | - | 3.0 ± 0.01 | ||
Apocarotenoids (ac) | - | 4.9 ± 0.23 | ||
Pyrazine (pyr) | - | 0.6 ± 0.02 | ||
Other non-terpene derivates (nt) | 3.5 ± 0.03 | 25.4 ± 0.75 |
Compounds | l.r.i. 1 | Class. | Relative Abundance (%) ± SD | |
---|---|---|---|---|
CTR Beer | Hibiscus Beer | |||
acetic acid | 603 | nt | 4.9 ± 0.39 a | - 3,b |
ethyl acetate | 743 | nt | 14.6 ± 1.36b | 30.4 ± 3.11a |
isoamyl alcohol | 736 | nt | 15.5 ± 1.47 | 13.7 ± 1.54 |
2-methylbutanol | 737 | nt | 4.4 ± 0.23 | 4.4 ± 0.68 |
1-pentanol | 765 | nt | 0.1 ± 0.00 | - |
isobutyl acetate | 771 | nt | 0.9 ± 0.06 | 0.7 ± 0.10 |
ethyl butyrate | 862 | nt | 1.6 ± 0.12 a | 1.1 ± 0.08 b |
isopentyl acetate | 876 | nt | 7.7 ± 0.55b | 10.6 ± 0.28 a |
2-methylbutanol acetate | 880 | nt | 1.2 ± 0.04 | 1.0 ± 0.17 |
styrene | 893 | nt | 2.1 ± 0.07 | 2.2 ± 0.88 |
myrcene | 991 | mh | 2.2 ± 0.30 a | 0.5 ± 0.27b |
ethyl hexanoate | 998 | nt | 8.6 ± 0.40 a | 7.0 ± 0.23b |
ethyl heptanoate | 1101 | nt | 0.3 ± 0.06 | 0.2 ± 0.06 |
nonanal | 1105 | nt | 0.1 ± 0.21 | 0.1 ± 0.03 |
phenylethyl alcohol | 1114 | nt | 0.9 ± 0.19 | 0.7 ± 0.04 |
ethyl octanoate | 1199 | nt | 26.4 ± 1.14 a | 21.4 ± 1.89b |
decanal | 1206 | nt | - | 0.2 ± 0.03 |
2-phenylethyl acetate | 1257 | nt | 0.1 ± 0.01 | - |
ethyl nonanoate | 1296 | nt | 0.1 ± 0.01 | 0.1 ± 0.02 |
ethyl 9-decenoate | 1387 | nt | 1.3 ± 0.16 | 1.2 ± 0.12 |
ethyl decanoate | 1396 | nt | 5.5 ± 1.27 | 3.9 ± 0.68 |
β-caryophyllene | 1419 | sh | 0.2 ± 0.10 | - |
α-humulene | 1453 | sh | 1.1 ± 0.42 a | 0.3 ± 0.15 b |
Total identified (%) | 100.0 ± 0.01 | 99.9 ± 0.04 | ||
Monoterpenes hydrocarbons (mh) | 2.1 ± 0.14 a | 0.5 ± 0.27 b | ||
Sesquiterpene hydrocarbons (sh) | 1.4 ± 0.52 a | 0.3 ± 0.15 b | ||
Other non-terpene derivatives (nt) | 96.4 ± 0.80 b | 99.0 ± 0.41 a | ||
Acids | 4.9 ± 0.39 a | - b | ||
Alcohols | 20.9 ± 1.28 | 18.8 ± 2.19 | ||
Esters | 68.4 ± 0.51 b | 77.6 ± 1.13 a | ||
Aldehydes | 0.1 ± 0.21 | 0.3 ± 0.03 | ||
Hydrocarbons | 2.1 ± 0.07 | 2.2 ± 0.88 |
Compounds | l.r.i. 1 | Class. | Relative Abundance (%) ± SD |
---|---|---|---|
ethyl acetate | 743 | nt | 1.7 ± 0.02 |
isoamyl alcohol | 736 | nt | 1.7 ± 0.05 |
2-methylbutanol | 737 | nt | 1.0 ± 0.02 |
isopentyl acetate | 876 | nt | 1.5 ± 0.07 |
α-thujene | 926 | mh | 1.4 ± 0.11 |
α-pinene | 933 | mh | 13.0 ± 0.57 |
camphene | 948 | mh | 0.5 ± 0.03 |
sabinene | 973 | mh | 4.3 ± 0.10 |
β-pinene | 977 | mh | 7.5 ± 0.23 |
myrcene | 991 | mh | 9.4 ± 0.08 |
α-terpinene | 1017 | mh | 0.8 ± 0.07 |
p-cymene | 1025 | mh | 10.2 ± 0.16 |
limonene | 1029 | mh | 34.4 ± 0.04 |
1,8-cineole | 1031 | om | 0.3 ± 0.04 |
γ-terpinene | 1058 | mh | 4.1 ± 0.01 |
terpinolene | 1089 | mh | 0.9 ± 0.02 |
ethyl octanoate | 1199 | nt | 0.8 ± 0.10 |
2-phenylethyl acetate | 1257 | nt | 0.2 ± 0.03 |
(E,Z)-2,4-decadienal | 1293 | nt | 0.2 ± 0.04 |
(E,E)-2,4-decadienal | 1316 | nt | 0.6 ± 0.13 |
α-cubebene | 1350 | sh | 0.4 ± 0.05 |
α-copaene | 1376 | sh | 0.1 ± 0.02 |
β-elemene | 1392 | sh | 0.4 ± 0.07 |
ethyl decanoate | 1396 | nt | 0.6 ± 0.10 |
β-caryophyllene | 1419 | sh | 1.2 ± 0.17 |
γ-elemene | 1433 | sh | 0.5 ± 0.07 |
trans-α-bergamotene | 1436 | sh | 0.4 ± 0.06 |
α-humulene | 1453 | sh | 0.5 ± 0.07 |
(E)-β-farnesene | 1458 | sh | 0.2 ± 0.03 |
germacrene D | 1481 | sh | 0.3 ± 0.05 |
β-selinene | 1486 | sh | 0.1 ± 0.00 |
β-bisabolene | 1509 | sh | 0.3 ± 0.04 |
δ-cadinene | 1524 | sh | 0.3 ± 0.05 |
ethyl dodecanoate | 1596 | nt | 0.2 ± 0.02 |
Total identified (%) | 100.0 ± 0.01 | ||
Monoterpene hydrocarbons (mh) | 86.3 ± 0.96 | ||
Oxygenated monoterpenes (om) | 0.3 ± 0.04 | ||
Sesquiterpene hydrocarbons (sh) | 4.8 ± 0.69 | ||
Other non-terpene derivatives (nt) | 8.5 ± 0.29 | ||
Alcohols | 2.7 ± 0.06 | ||
Esters | 4.9 ± 0.15 | ||
Aldehydes | 0.8 ± 0.15 |
Control Beer | Hibiscus Beer | |
---|---|---|
Odor attribute | ||
Overall intensity | 3 | 4 |
Malty | 6 | 2 |
Hoppy | 4 | 1 |
Floral | 3 | 6 |
Fruity | 0 | 5 |
Spicy | 0 | 2 |
Honey | 0 | 0 |
Roasted | 0 | 0 |
Visual attribute | ||
Foam persistency | 4 | 7 |
Turbidity | 2 | 3 |
Gustatory attribute | ||
Overall intensity | 3 | 5 |
Sweet | 0 | 0 |
Bitter | 3 | 2 |
Salty | 0 | 2 |
Sour | 0 | 4 |
Alcohol | 2 | 2 |
Malty | 6 | 1 |
Hoppy | 4 | 2 |
Floral | 2 | 6 |
Fruity | 2 | 5 |
Spicy | 0 | 2 |
Honey | 0 | 0 |
Roasted | 0 | 0 |
Texture attribute | ||
Fullness | 2 | 2 |
Texture attribute | 4 | 4 |
Astringent | 2 | 4 |
Hibiscus rosa-sinensis L. Flowers | Humulus lupulus cv. Cascade L. Cones | Control Beer | Hibiscus Beer | Hibiscus Liqueur | |
---|---|---|---|---|---|
Total chlorophylls (µg/g DW) | 8.28 ± 1.69 | 671.77 ± 65.64 | |||
Total carotenoids (µg/g DW) | 229.29 ± 24.26 | 161.17 ± 7.66 | |||
Total anthocyanins (mg/g DW) | 16.26 ± 0.98 | nd | |||
Total anthocyanins (μg/mL) | nd b | 2.76 ± 0.26 a | 134.21 ± 5.24 | ||
Total flavonoids (mg CE/g DW) | 73.91 ± 6.9 | 27.29 ± 1.89 | |||
Total flavonoids (μg CE/mL) | 201.37 ± 5.83 b | 360.66 ± 4.72 a | 741.26 ± 5.83 | ||
Total polyphenols (mg GAE/g DW) | 114.57 ± 4.89 | 99.45 ± 5.68 | |||
Total polyphenols (μg GAE/mL) | 350.31 ± 9.42 b | 436.26 ± 15.57 a | 847.66 ± 36.95 | ||
DPPH-assay scavenging effect % | 75.7 ± 0.29 | 62.62 ± 1.95 | 35.79 ± 0.97 b | 74.71 ± 6.94 a | 73.45 ± 6.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieracci, Y.; Pistelli, L.; Lari, M.; Iannone, M.; Marianelli, A.; Ascrizzi, R.; Pistelli, L.; Flamini, G. Hibiscus rosa-sinensis as Flavoring Agent for Alcoholic Beverages. Appl. Sci. 2021, 11, 9864. https://doi.org/10.3390/app11219864
Pieracci Y, Pistelli L, Lari M, Iannone M, Marianelli A, Ascrizzi R, Pistelli L, Flamini G. Hibiscus rosa-sinensis as Flavoring Agent for Alcoholic Beverages. Applied Sciences. 2021; 11(21):9864. https://doi.org/10.3390/app11219864
Chicago/Turabian StylePieracci, Ylenia, Luisa Pistelli, Matteo Lari, Matteo Iannone, Andrea Marianelli, Roberta Ascrizzi, Laura Pistelli, and Guido Flamini. 2021. "Hibiscus rosa-sinensis as Flavoring Agent for Alcoholic Beverages" Applied Sciences 11, no. 21: 9864. https://doi.org/10.3390/app11219864
APA StylePieracci, Y., Pistelli, L., Lari, M., Iannone, M., Marianelli, A., Ascrizzi, R., Pistelli, L., & Flamini, G. (2021). Hibiscus rosa-sinensis as Flavoring Agent for Alcoholic Beverages. Applied Sciences, 11(21), 9864. https://doi.org/10.3390/app11219864