Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Device and Data Processing
2.3. Procedures
2.3.1. Maximum Isometric Hip Extension (MIHE)
2.3.2. Maximum Velocity Hip Extension (MVHE)
2.3.3. Maximum Isometric Knee Flexion (MIKF)
2.3.4. Maximum Velocity Knee Flexion (MVKF)
2.4. Statistical Analysis
- (i)
- Hamstring motor task (either hip extension or knee flexion)
- (ii)
- Lower limb laterality (either dominant or non-dominant)
- (iii)
- Gender
- (iv)
- Movement type (either maximum isometric torque or 50% of maximum torque–maximum velocity).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Schache, A.G.; Dorn, T.W.; Blanch, P.D.; Brown, N.A.T.; Pandy, M.G. Mechanics of the Human Hamstring Muscles during Sprinting. Med. Sci. Sports Exerc. 2012, 44, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Kellis, E.; Konstantinidou, A.; Ellinoudis, A. Muscle Length of the Hamstrings Using Ultrasonography Versus Musculoskeletal Modelling. J. Funct. Morphol. Kinesiol. 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Galanis, N.; Natsis, K.; Kapetanos, G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J. Electromyogr. Kinesiol. 2010, 20, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, O.; Fukutani, A. Muscle Recruitment Pattern of The Hamstring Muscles in Hip Extension and Knee Flexion Exercises. J. Hum. Kinet. 2020, 72, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Garrett, W.E.; Moorman, C.T.; Yu, B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J. Sport Health Sci. 2012, 1, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Opar, D.A.; Williams, M.D.; Shield, A. Hamstring Strain Injuries. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Herrington, L. The Effects of 4 Weeks of Jump Training on Landing Knee Valgus and Crossover Hop Performance in Female Basketball Players. J. Strength Cond. Res. 2010, 24, 3427–3432. [Google Scholar] [CrossRef]
- Wan, X.; Qu, F.; Garrett, W.E.; Liu, H.; Yu, B. The effect of hamstring flexibility on peak hamstring muscle strain in sprinting. J. Sport Health Sci. 2017, 6, 283–289. [Google Scholar] [CrossRef]
- Erickson, L.N.; Sherry, M.A. Rehabilitation and return to sport after hamstring strain injury. J. Sport Health Sci. 2017, 6, 262–270. [Google Scholar] [CrossRef]
- Uchida, M.C.; Nishida, M.M.; Sampaio, R.A.C.; Moritani, T.; Arai, H. Thera-band® elastic band tension: Reference values for physical activity. J. Phys. Ther. Sci. 2016, 28, 1266–1271. [Google Scholar] [CrossRef] [Green Version]
- Shoepe, T.C.; Ricci, J.M.; Vejarano, G.; Reyes, N.P.; Gobreial, N.M. Volume estimations for combined free-weight and rubber-band resistance exercise. Kinesiology 2017, 49, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Hintermeister, R.A.; Bey, M.J.; Lange, G.W.; Steadman, J.R.; Dillman, C.J. Quantification of Elastic Resistance Knee Rehabilitation Exercises. J. Orthop. Sports Phys. Ther. 1998, 28, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Martins, W.; Carvalho, R.S.; Silva, M.S.; Blasczyk, J.C.; Araújo, J.A.; Carmo, J.D.; Rodacki, A.L.F.; Oliveira, R. Mechanical evaluation of elastic tubes used in physical therapy. Physiother. Theory Pr. 2013, 30, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Morales, I.; Mattiozzi, A.; Peláez, A.; Pérez, S.; Fernández, A.; Vignoli, M.; Domínguez, J.; Battistin, M.; Barboza, R.; et al. Posterior Thigh Isometric Force Measurement with Extended Knee. J. Sci. Res. Rep. 2019, 23, 1–8. [Google Scholar] [CrossRef]
- Colado, J.C.; Garcia-Masso, X.; Triplett, N.T.; Calatayud, J.; Flandez, J.; Behm, D.; Rogers, M.E. Construct and Concurrent Validation of a New Resistance Intensity Scale for Exercise with Thera-Band® Elastic Bands. J. sports Sci. Med. 2014, 13, 758–766. [Google Scholar]
- McMaster, D.T.; Cronin, J.; McGuigan, M. Forms of Variable Resistance Training. Strength Cond. J. 2009, 31, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, B.; McAleer, S.; Kelly, S.; Chakraverty, R.; Johnston, M.; Pollock, N. Hamstring rehabilitation in elite track and field athletes: Applying the British Athletics Muscle Injury Classification in clinical practice. Br. J. Sports Med. 2019, 53, 1464–1473. [Google Scholar] [CrossRef]
- Herrington, L. The rehabilitation of two patients with functionally unstable ACL deficient knees: A case report. Phys. Ther. Sport 2004, 5, 175–178. [Google Scholar] [CrossRef]
- Santos, D.; Barboza, R.; Dominguez, J.; Fernandez, A.; Veirano, F.; Perez, P.; Motta, F.; Simini, F. DINABANG: Explosive Force Hamstring Rehabilitation Biomechanics Instrument. In Proceedings of the International Conference on Advances in Biomedicine and Biomedical Engineering & 6th International Conference on Biotechnology and Bioengineering, Offenburg, Germany, 26–28 September 2017; Volume 23, p. 2017. [Google Scholar]
- Baltzopoulos, V.; Brodie, D. Isokinetic dynamometry: Applications and limitations. Sports Med. 1987, 8, 101–116. [Google Scholar] [CrossRef]
- Simini, F.; Santos, D.; Barboza, R.; Dominguez, J.; Fernandez, A.; Mattiozzi, A.; Biancardi, C. DINABANG: Novel lower limb torque, velocity and power meter for static and elastic band explosive force estimation in the sports field or rehabilitation gymnasium. In Proceedings of the Sent to BioSMART 2021 4th International Conference on Bio-Engineering for Smart Technologie, Paris, France, 8–10 December 2021. [Google Scholar]
- Briggs, K.; Richard, S.J.; Hay, C.J.; Sophia, H. Lysholm Score and Tegner Activity Level in Individuals With Normal Knees. Am. J. Sports Med. 2009, 37, 898–901. [Google Scholar] [CrossRef]
- Winter, D. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bardella, P.; García, I.C.; Pozzo, M.; Tous-Fajardo, J.; De Villareal, E.S.; Suarez-Arrones, L. Optimal sampling frequency in recording of resistance training exercises. Sports Biomech. 2016, 16, 102–114. [Google Scholar] [CrossRef]
- Patterson, R.M.; Jansen, C.W.S.; Hogan, H.A.; Nassif, M.D. Material Properties of Thera-Band Tubing. Phys. Ther. Rehabil. J. 2001, 81, 1437–1445. [Google Scholar] [CrossRef]
- Sakanoue, N.; Katayama, K. The Resistance Quantity in Knee Extension Movement of Exercise Bands (Thera-Band). J. Phys. Ther. Sci. 2007, 19, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Jaric, S. Use of Normalisation for Body Size. Sports Med. 2002, 32, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.; Barboza, R.; Fernandez, A. DINABANG: Instrument for Quantifying the Effort Made by a Patient in Rehabilitation of ACL Reconstructed; Universidad de la Republica: Montevideo, Uruguay, 2018. [Google Scholar]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of Performance Measurements Derived From Ground Reaction Force Data During Countermovement Jump and the Influence of Sampling Frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TE Connectivity. FX19 Compression Load Cell. Available online: https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=FX19&DocType=DS&DocLang=English (accessed on 16 December 2020).
- Eaton, J.W. GNU Octave. 2018. Available online: https://www.gnu.org/software/octave/index (accessed on 1 August 2018).
- Fillyaw, M.; Bevins, T.; Fernandez, L. Importance of Correcting Isokinetic Peak Torque for the Effect of Gravity when Calculating Knee Flexor to Extensor Muscle Ratios. Phys. Ther. 1986, 66, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TDK Invensense. MPU-6000/MPU-6050. Available online: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (accessed on 16 December 2020).
- Neto, W.K.; Soares, E.G.; Vieira, T.L.; Aguiar, R.; Chola, T.A. Gluteus maximus activation during common strength and hypertrophy exercises: A systematic review. J. Sports Sci. Med. 2020, 19, 195–203. [Google Scholar] [PubMed]
- Jeon, I.-C.; Hwang, U.-J.; Jung, S.-H.; Kwon, O.-Y. Comparison of gluteus maximus and hamstring electromyographic activity and lumbopelvic motion during three different prone hip extension exercises in healthy volunteers. Phys. Ther. Sport 2016, 22, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, M.Z.; Đurić, S.; Cuk, I.; Suzovic, D.; Jaric, S. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests. J. Hum. Kinet. 2017, 56, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Parcell, A.C.; Sawyer, R.D.; Tricoli, V.A.; Chinevere, T.D. Minimum rest period for strength recovery. Med. Sci. Sport Exerc. 2002, 34, 1018–1022. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing, Austria, Vienna. 2020. Available online: https://www.r-project.org/ (accessed on 1 March 2020).
- Kumazaki, T.; Ehara, Y.; Sakai, T. Anatomy and Physiology of Hamstring Injury. Endoscopy 2012, 33, 950–954. [Google Scholar] [CrossRef]
- Arnold, E.M.; Hamner, S.R.; Seth, A.; Millard, M.; Delp, S.L. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. J. Exp. Biol. 2013, 216, 2150–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahler, A.S.; Fales, J.T.; Zierler, K.L. The Dynamic Properties of Mammalian Skeletal Muscle. J. Gen. Physiol. 1968, 51, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Horsman, M.D.K.; Koopman, H.F.J.M.; van der Helm, F.C.T.; Pros, L.P.; Veeger, H.E.J. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 2007, 22, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Levin, M.F.; Scholz, J.P.; Schöner, G. Motor control theories and their applications. Medicina 2010, 46, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Garrett, W.; Califf, J.; Bassett, F. Histochemical correlates of hamstring injuries. Am. J. Sports Med. 1984, 12, 98–103. [Google Scholar] [CrossRef]
- Wallace, B.J.; Winchester, J.B.; McGuigan, M.R. Effects of Elastic Bands on Force and Power Characteristics During the Back Squat Exercise. J. Strength Cond. Res. 2006, 20, 268–272. [Google Scholar] [CrossRef]
- A Maffiuletti, N. Assessment of Hip and Knee Muscle Function in Orthopaedic Practice and Research. J. Bone Jt. Surg.-Am. Vol. 2010, 92, 220–229. [Google Scholar] [CrossRef]
- Moffroid, M.; Whipple, R.; Hofkosh, J.; Lowman, E.; Thistle, H. A Study of Isokinetic Exercise. Phys. Ther. 1969, 49, 735–747. [Google Scholar] [CrossRef]
Male (n = 13) | Female (n = 7) | Difference (95% CI) | |
---|---|---|---|
Age (years) | 26.31 (5.89) | 24.43 (2.07) | 1.88 (−3.00; 6.76) |
Height (cm) | 176.46 (5.33) | 163.71 (6.02) | 12.74 (7.26; 18.23) |
Body mass (kg) | 74.85 (14.16) | 57.86 (5.76) | 16.98 (5.14; 28.8) |
BMI (kg/m2) | 23.89 (3.60) | 21.60 (2.05) | 2.29 (−0.82; 5.42) |
Male | Female | Male + Female | |||
---|---|---|---|---|---|
Motor Task | Dominant | Non-Dominant | Dominant | Non-Dominant | Dominant and Non-Dominant |
Maximum Torque (Nm/kg) | |||||
MIHE | 3.07 (0.75) | 2.90 (0.74) | 2.87 (0.62) | 2.77 (0.56) | 2.93 (0.68) |
MVHE | 2.46 (0.57) | 2.34 (0.61) | 2.48 (0.49) | 2.42 (0.51) | 2.42 (0.54) |
MIKF | 1.25 (0.33) | 1.19 (0.33) | 1.21 (0.15) | 1.16 (0.14) | 1.21 (0.27) |
MVKF | 1.10 (0.29) | 1.06 (0.28) | 1.06 (0.14) | 1.03 (0.13) | 1.07 (0.23) |
Maximum Velocity (°/s) | |||||
MVHE | 214.64 (40.56) | 212.38 (48.65) | 222.17 (29.09) | 218.16 (37.88) | 215.96 (39.69) |
MVKF | 418.17 (86.38) | 408.52 (67.67) | 437.80 (41.28) | 414.16 (69.84) | 452.56 (79.72) |
Maximum Power (°Nm/s.kg) | |||||
MVHE | 553.59 (227.55) | 527.81 (263.50) | 553.86 (141.43) | 535.30 (164.20) | 542.13 (209.27) |
MVKF | 471.17 (236.65) | 438.38 (204.59) | 464.88 (77.49) | 432.65 (109.73) | 452.56 (179.73) |
Maximum Torque | Maximum Velocity | Maximum Power | ||||
---|---|---|---|---|---|---|
Estimate Nm/kg | p-Value | Estimate °/s | p-Value | Estimate °Nm/s.kg | p-Value | |
Intercept | 2.851 | <0.001 | 314.245 | <0.001 | 551.672 | <0.001 |
Centred Age (25 years) | 0.001 | 0.890 | −3.593 | 0.015 | −6.491 | 0.214 |
Gender (Female) | −0.044 | 0.590 | −5.494 | 0.677 | 8.563 | 0.856 |
Lower Limb Laterality (Dominant) | −0.085 | 0.266 | −8.853 | 0.483 | −27.852 | 0.539 |
Movement Type (Isometric) | −0.327 | <0.001 | -- | -- | -- | -- |
Hamstring Motor Task (Hip Extension) | −1.535 | <0.001 | 202.38 | <0.001 | −89.569 | 0.051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.; Massa, F.; Dominguez, J.; Morales, I.; Del Castillo, J.; Mattiozzi, A.; Simini, F. Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion. Appl. Sci. 2021, 11, 10509. https://doi.org/10.3390/app112210509
Santos D, Massa F, Dominguez J, Morales I, Del Castillo J, Mattiozzi A, Simini F. Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion. Applied Sciences. 2021; 11(22):10509. https://doi.org/10.3390/app112210509
Chicago/Turabian StyleSantos, Dario, Fernando Massa, Jorge Dominguez, Isabel Morales, Juan Del Castillo, Andrea Mattiozzi, and Franco Simini. 2021. "Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion" Applied Sciences 11, no. 22: 10509. https://doi.org/10.3390/app112210509
APA StyleSantos, D., Massa, F., Dominguez, J., Morales, I., Del Castillo, J., Mattiozzi, A., & Simini, F. (2021). Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion. Applied Sciences, 11(22), 10509. https://doi.org/10.3390/app112210509