Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of the Cyanobacterium Strain
2.2. Preparation of Carrageenans Extract
2.2.1. Harvesting of Seaweed Material
2.2.2. Carrageenans Extraction
2.3. Laboratory-Based Application of Carrageenans on Dolomitic Limestone Replicas
2.4. Evaluation of Carrageenans Treatment on the Proliferation of P. sesnandensis on Stone Replicas
2.5. Statistical Analysis
3. Results
3.1. Effect of Carrageenans on the Proliferation of P. sesnandensis
3.2. SEM and Colorimetric Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, L. Algae of terrestrial habitats. Bot. Rev. 1989, 55, 77–105. [Google Scholar] [CrossRef]
- Crispim, C.A.; Gaylarde, C.C. Cyanobacteria and biodeterioration of cultural heritage: A review. Microb. Ecol. 2005, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.F.; Miller, A.Z.; Dionísio, A.; Saiz-Jimenez, C. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology 2009, 155, 3476–3490. [Google Scholar] [CrossRef] [Green Version]
- Gaylarde, C.C. Influence of Environment on Microbial Colonization of Historic Stone Buildings with Emphasis on Cyanobacteria. Heritage 2020, 3, 1469–1482. [Google Scholar] [CrossRef]
- Rossi, F.; Micheletti, E.; Bruno, L.; Adhikary, S.P.; Albertano, P.; Phillips, R.D. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 2012, 28, 215–224. [Google Scholar] [CrossRef] [Green Version]
- De Los Ríos, A.; Galván, V.; Ascaso, C. In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int. Biodeterior. Biodegrad. 2004, 54, 113–120. [Google Scholar] [CrossRef]
- Dakal, T.C.; Cameotra, S.S. Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environ. Sci. Eur. 2012, 24, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Soares, F.; Portugal, A.; Trovão, J.; Coelho, C.; Mesquita, N.; Pinheiro, A.C.; Gil, F.; Catarino, L.; Cardoso, S.M.; Tiago, I. Structural diversity of photoautotrophic populations within the UNESCO site ‘Old Cathedral of Coimbra’ (Portugal), using a combined approach. Int. Biodeterior. Biodegrad. 2019, 140, 9–20. [Google Scholar] [CrossRef]
- Soares, F.; Trovão, J.; Cardoso, S.M.; Tiago, I.; Portugal, A. Parakomarekiella sesnandensis gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). Eur. J. Phycol. 2020, 56, 301–315. [Google Scholar] [CrossRef]
- Tiano, P. Biodeterioration of monumental rocks: Decay mechanisms and control methods. Sci. Technol. Cult. Herit. 1998, 7, 19–38. [Google Scholar]
- Sasso, S.; Miller, A.Z.; Rogerio-Candelera, M.A.; Cubero, B.; Coutinho, M.L.; Scrano, L.; Bufo, S.A. Potential of natural biocides for biocontrolling phototrophic colonization on limestone. Int. Biodeterior. Biodegrad. 2015, 107, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- De Saravia, S.G.; Rastelli, S.E.; Blustein, G.; Viera, M.R. Natural compounds as potential algaecides for waterborne paints. J. Coat. Technol. Res. 2018, 15, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Bruno, L.; Rugnini, L.; Spizzichino, V.; Caneve, L.; Canini, A.; Ellwood, N.T.W. Biodeterioration of Roman hypogea: The case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). Ann. Microbiol. 2019, 69, 1023–1032. [Google Scholar] [CrossRef]
- Stanley, N.F. Production, properties and use of carrageenans. In Production and Utilization of Products from Commercial Seaweeds; McHugh, D.J., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1987; pp. 97–147. [Google Scholar]
- Yuan, H.; Song, J.; Li, X.; Li, N.; Liu, S. Enhanced immunostimulatory and antitumor activity of different derivatives of κ-carrageenan oligosaccharides from Kappaphycus striatum. J. Appl. Phycol. 2010, 23, 59–65. [Google Scholar] [CrossRef]
- Patel, S. Therapeutic importance of sulfated polysaccharides from seaweeds: Updating the recent findings. Biotech 2012, 3, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Soares, F.; Fernandes, C.; Silva, P.; Pereira, L.; Gonçalves, T. Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J. Appl. Phycol. 2016, 5, 2991–2998. [Google Scholar] [CrossRef]
- Perez, R.; Kaas, R.; Campello, F.; Arbault, S.; Baarbaroux, O. La Culture des Algues Marines dans le Monde; IFREMER: Plouzané, France, 1992; p. 637. [Google Scholar]
- Cardoso, S.M.; Carvalho, L.G.; Silva, P.J.; Rodrigues, M.S.; Pereira, O.R.; Pereira, L. Bioproducts from macroalgae: A review with focus on the Iberian Peninsula. Curr. Org. Chem. 2014, 18, 896–917. [Google Scholar] [CrossRef]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, B. Seaweed products: Red algae of economic significance. In Marine & Freshwater Products Handbook; Martin, R.E., Ed.; Technomic Pub Co.: Lancaster, UK, 2000; pp. 515–529. [Google Scholar]
- Pereira, L.; Van de Velde, F. Portuguese carrageenophytes: Carrageenans composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr. Polym. 2011, 84, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Guiry, M.D. Structure, life-history and hybridization of Atlantic Gigartina teedii (Rhodophyta) in culture. Brit. Phycol. J. 1984, 19, 37–55. [Google Scholar] [CrossRef]
- Braga, M.R.A. Taxonomia e Biologia da Gigartina Teedii (Roth) Lamouroux (Rhodophyta, Gigartinales) no Litoral do Estado de São Paulo. Ph.D. Thesis, University São Paulo, São Paulo, Brazil, 1985. [Google Scholar]
- Braga, M.R.A. Reproductive characteristics of Gigartina teedii (Roth) Lamouroux (Rhodophyta, Gigartinales), a turf-forming species-Field and laboratory culture studies. Bot. Mar. 1990, 33, 401–409. [Google Scholar]
- Pereira, L.; Gheda, S.F.; Ribeiro-Claro, P.J.A. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013, 2013, 537202. [Google Scholar] [CrossRef]
- Pereira, L.; Mesquita, J.F. Population studies and carrageenan properties of Chondracanthus teedei var. lusitanicus (Gigartinaceae, Rhodophyta). J. Appl. Phycol. 2004, 16, 369–383. [Google Scholar] [CrossRef]
- Gaspar, R.; Pereira, L.; Sousa-Pinto, I. The seaweed resources of Portugal. Bot. Mar. 2019, 62, 499–525. [Google Scholar] [CrossRef]
- Pereira, L.; Silva, P. A concise review of the red macroalgae Chondracanthus teedei (Mertens ex Roth) Kützing and Chondracanthus teedei var. lusitanicus (J.E. De Mesquita Rodrigues) Bárbara & Cremades. J. Appl. Phycol. 2020, 33, 111–131. [Google Scholar]
- Pereira, L.; Amado, A.M.; Critchley, A.T.; van de Velde, F.; Ribeiro-Claro, P.J.A. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FTRaman). Food Hydrocoll. 2009, 23, 1903–1909. [Google Scholar] [CrossRef] [Green Version]
- Soares, F. Antifungal, Antibacterial and Antiviral Activity of Chondracathus Teedei var. Lusitanicus (Gigartinaceae, Rhodophyta). Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Zinoun, M.; Cosson, J. Seasonal variation in growth and carrageenan content of Calliblepharis jubata (Rhodophyceae, Gigartinales) from the Normandy coast, France. J. Appl. Phycol. 1996, 8, 29–34. [Google Scholar] [CrossRef]
- Huertas, R.; Melgosa, M.; Hita, E. Influence of random-dot textures on perception of suprathreshold color differences. J. Opt. Soc. Am. A 2006, 23, 2067–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto, B.; Vázquez-Nion, D.; Fuentes, E.; Durán-Román, A.G. Response of subaerial biofilms growing on stone-built cultural heritage to changing water regime and CO2 conditions. Int. Biodeterior. Biodegrad. 2020, 148, 104882. [Google Scholar] [CrossRef]
- Tomaselli, L.; Lamenti, G.; Bosco, M.; Tiano, P. Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int. Biodeterior. Biodegrad. 2000, 46, 251–258. [Google Scholar] [CrossRef]
- Coutinho, M.L.; Miller, A.Z.; Martin-Sanchez, P.M.; Mirão, J.; Gomez-Bolea, A.; Machado-Moreira, B.; Cerqueira-Alvesi, L.; Jurado, V.; Saiz-Jimenez, C.; Lima, A.; et al. A multi-proxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles. Environ. Microbiol. 2016, 18, 4794–4816. [Google Scholar] [CrossRef] [PubMed]
- Cuzman, O.A.; Camaiti, M.; Sacchi, B.; Tiano, P. Natural antibiofouling agents asnew control method for phototrophic biofilms dwelling on monumental stone surfaces. Int. J. Conserv. Sci. 2011, 2, 3–16. [Google Scholar]
- Verwer, P.E.B.; van Duijn, M.L.; Tavakol, M.; Bakker-Woudenberg, I.A.J.M.; van de Sande, W.W.J. Reshuffling of Aspergillus fumigatus cell wall components chitin and β-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob. Agents Chemother. 2012, 56, 1595–1598. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.; Anjos, J.; Walker, L.A.; Silva, B.M.; Cortes, L.; Mota, M.; Munro, C.A.; Gow, N.A.; Gonçalves, T. Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors. Antimicrob. Agents Chemother. 2014, 58, 2894–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasse, H.S.; Snethlage, R. Methods for the Evaluation of Stone Conservation Treatments. In Dahlem Workshop on Saving Our Architectural Heritage; Baer, N.S., Snethlage, R., Eds.; John Wiley & Sons Ltd.: Berlin, Germany, 1996. [Google Scholar]
- Vigliano, G. Graffiti and Antigraffiti Project. 2002. Available online: http://www.icr.beniculturali.it/ (accessed on 2 November 2021).
- Pinna, D. Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives; Apple Academic Press: Waretown, DC, USA, 2017; 382p. [Google Scholar]
- Prieto, B.; Silva, B.; Lantes, O. Biofilm quantification on stone surfaces: Comparison of various methods. Sci. Total Environ. 2004, 333, 1–7. [Google Scholar] [CrossRef]
- Sanmartín, P.; Vázquez-Nion, D.; Silva, B.; Prieto, B. Spectrophotometric color measurement for early detection and monitoring of greening on granite buildings. Biofouling 2012, 28, 329–338. [Google Scholar] [CrossRef]
- Allsopp, C.; Allsopp, D. An updated survey of commercial products used to protect materials against biodeterioration. Biodet. Bull. 1983, 19, 99–146. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.M.; El-Wekeek, F.M.; Ramadan, E.M.; Abed-Allah, A.A. Microbial deterioration of archaeological marble: Identification and treatment. Ann. Agric. Sci. 2012, 57, 137–144. [Google Scholar] [CrossRef]
Unpaired t Test | Detail |
---|---|
p value | 0.0288 |
p value summary | * |
Significantly different (p < 0.05)? | Yes |
t, df | t = 3341, df = 4 |
L* (D65) | a* (D65) | b* (D65) | ΔE* | |
---|---|---|---|---|
Stone Control (Non-experimental) | 70.82 (±0.13) | 6.36 (±0.99) | 22.37 (±2.26) | 0 |
Biocide on Stone Control (Non-experimental) | 71.50 (±1.41) | 7.21 (±0.19) | 22.56 (±1.00) | 1.10 |
Stone Control Experimental | 55.93 (±0.81) | 10.58 (±1.69) | 24.97 (±5.28) | 15.70 |
Biocide on Stone Control Experimental | 62.69 (±0.56) | 9.15 (±1.20) | 27.90 (±4.49) | 10.22 |
Inoculated Organism on Stone Experimental | 31.72 (±8.90) | 3.62 (±1.61) | 16.91 (±1.56) | 39.57 |
Inoculated Organism on Stone with Biocide Experimental | 55.34 (±6.60) | 10.23 (±2.83) | 27.39 (±4.25) | 16.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, F.; Trovão, J.; Gil, F.; Catarino, L.; Tiago, I.; Portugal, A.; Cardoso, S.M. Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis. Appl. Sci. 2021, 11, 10589. https://doi.org/10.3390/app112210589
Soares F, Trovão J, Gil F, Catarino L, Tiago I, Portugal A, Cardoso SM. Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis. Applied Sciences. 2021; 11(22):10589. https://doi.org/10.3390/app112210589
Chicago/Turabian StyleSoares, Fabiana, João Trovão, Francisco Gil, Lídia Catarino, Igor Tiago, António Portugal, and Susana M. Cardoso. 2021. "Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis" Applied Sciences 11, no. 22: 10589. https://doi.org/10.3390/app112210589
APA StyleSoares, F., Trovão, J., Gil, F., Catarino, L., Tiago, I., Portugal, A., & Cardoso, S. M. (2021). Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis. Applied Sciences, 11(22), 10589. https://doi.org/10.3390/app112210589