Real-Time Quantification of Crude Protein and Neutral Detergent Fibre in Pastures under Montado Ecosystem Using the Portable NIR Spectrometer
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples Mensurements and Colletion
Reference Chemical Processing
2.3. Sprectra Collection
2.4. Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Evaluation of CP and NDF Reference Data
3.3. Evaluation of Near-Infrared Spetroscopy (NIRS) Data
4. Discussion
4.1. Variability of Crude Protein and Fibre (NDF) Reference Data
4.2. NIRS Models Accuracy: Calibration and Validation
4.3. NIRS Models Accuracy: Spectral Range
4.4. Perspectives for NIRS Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batista, T.; Mascarenhas, J.M.; Mendes, P. Montado’s ecosystem functions and services: The case study of Alentejo Central—Portugal. Landsc. Ecol. Eng. 2017, 44, 15–27. [Google Scholar]
- Pinto-Correia, T.; Ribeiro, N.; Potes, J. Livro Verde dos Montados. Edição: ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora: Évora, Portugal, 2013. [Google Scholar]
- Serrano, J. Utilização eficiente dos recursos no Montado: Sensores próximos e detecção remota no apoio à tomada de decisão. Bol. CCDR Alentejo Perspect. 2020 2019, 32, 18–25. [Google Scholar]
- Serrano, J.; Peça, J.; Silva, J.M.; Shahidian, S.; Carvalho, M. Phosphorus dynamics in permanente pastures: Differential fertilizing and the animal effect. Nutr. Cycl. Agroecosys. 2011, 90, 63–74. [Google Scholar] [CrossRef]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilhó, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Da Silva, J.M. Monitoring Seasonal Pasture Quality Degradation in the Mediterranean Montado Ecosystem: Proximal versus Remote Sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef] [Green Version]
- Miao, F.; Guo, Z.; Xue, R.; Wang, X.; Shen, Y. Effects of Grazing and Precipitation on Herbage Biomass, Herbage Nutritive Value, and Yak Performance in an Alpine Meadow on the Qinghai–Tibetan Plateau. PLoS ONE 2015, 10, e0127275. [Google Scholar] [CrossRef] [PubMed]
- Efe Serrano, J. Pastures in Alentejo: Technical Basis for Characterization, Grazing and Improvement; Universidade de Évora—ICAM, Ed.; Gráfica Eborense: Évora, Portugal, 2006; pp. 165–178. [Google Scholar]
- Biewer, S.; Fricke, T.; Wachendorf, M. Development of Canopy Reflectance Models to Predict Forage Quality of Legume-Grass Mixtures. Crop Sci. 2009, 49, 1917–1926. [Google Scholar] [CrossRef]
- Fontaneli, R.S.; Scheffer-Basso, S.M.; Dürr, J.W.; Appelt, J.V.; Bortolini, F.; Haubert, F.A. Predição da composição química de bermudas (Cynodon spp.) pela espectroscopia de reflectância no infravermelho proximal. Rev. Bras. Zootec. 2004, 33, 838–842. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Mereu, L.; Davis, J. The Use of Mobile Near-Infrared Spectroscopy for Real-Time Pasture Management. Front. Sustain. Food Syst. 2018, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Carapau, Â.; Rato, A. Near-Infrared Spectroscopy (NIRS) and Optical Sensors for Estimating Protein and Fiber in Dryland Mediterranean Pastures. AgriEngineering 2021, 3, 73–91. [Google Scholar] [CrossRef]
- Pullanagari, R.; Yule, I.; King, W.; Dalley, D.; Dynes, R. The use of optical sensors to estimate pasture quality. Int. J. Smart Sens. Intell. Syst. 2011, 4, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Swart, E.; Brand, T.; Engelbrecht, J. The use of near infrared spectroscopy (NIRS) to predict the chemical composition of feed samples used in ostrich total mixed rations. South Afr. J. Anim. Sci. 2012, 42. [Google Scholar] [CrossRef] [Green Version]
- Decruyenaere, V.; Lecomte, P.; Demarquilly, C.; Aufrere, J.; Dardenne, P.; Stilmant, D.; Buldgen, A. Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Anim. Feed. Sci. Technol. 2009, 148, 138–156. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multiespectral radiometry. Grass. Forage Sci. 2013, 68, 110–119. [Google Scholar] [CrossRef]
- Evangelista, C.; Basiricò, L.; Bernabucci, U. An Overview on the Use of Near Infrared Spectroscopy (NIRS) on Farms for the Management of Dairy Cows. Agriculture 2021, 11, 296. [Google Scholar] [CrossRef]
- Zanine, A.M.; Santos, E.M.; Ferreira, D.J. Principales métodos de evaluación de pasturas—Methods main of evaluation of pastures—Principais métodos de avaliação de pastagens. Rev. Electron. Vet. 2006, 7, 1–13, REDVET ISSN 1695-7504. [Google Scholar]
- Serrano, J.M.; Shahidian, S.; Da Silva, J.R.M. Monitoring pasture variability: Optical OptRx® crop sensor versus Grassmaster II capacitance probe. Environ. Monit. Assess. 2016, 188, 117. [Google Scholar] [CrossRef]
- Gebremedhin, A.; Badenhorst, P.; Wang, J.; Spangenberg, G.C.; Smith, K.F. Prospects for Measurement of Dry Matter Yield in Forage Breeding Programs Using Sensor Technologies. Agronomy 2019, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef]
- Bagchi, T.B.; Sharma, S.; Chattopadhyay, K. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chem. 2016, 191, 21–27. [Google Scholar] [CrossRef]
- Lanza, I.; Conficoni, D.; Balzan, S.; Cullere, M.; Fasolato, L.; Serva, L.; Contiero, B.; Trocino, A.; Marchesini, G.; Xiccato, G.; et al. Assessment of chicken breast shelf life based on bench-top and portable near-infrared spectroscopy tools coupled with chemometrics. Food Qual. Saf. 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Murphy, D.J.; Brien, B.O.; Donovan, M.O.; Condon, T.; Murphy, M.D. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Inf. Process. Agric. 2021. Available online: https://doi.org/10.1016/j.inpa.2021.04.012 (accessed on 10 November 2021). [CrossRef]
- Givens, D.I.; Deaville, E.R. The current and future role of near infrared reflectance spectroscopy in animal nutrition: A review. Aust. J. Agric. Res. 1999, 50, 1131–1145. [Google Scholar] [CrossRef]
- Corson, D.C.; Waghorn, G.C.; Ulyatt, M.J.; Lee, J. NIRS: Forage analysis and livestock feeding. Proc. New Zealand Grassl. Assoc. 1999, 61, 127–132. Available online: http://www.grassland.org.nz/publications/nzgrassland_publication_507.pdf (accessed on 10 November 2021). [CrossRef]
- Danieli, P.P.; Carlini, P.; Bernabucci, U.; Ronchi, B. Quality evaluation of regional forage resources by means of near infrared reflectance spectroscopy. Ital. J. Anim. Sci. 2004, 3, 363–376. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W. In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture. Precis. Agric. 2012, 13, 351–369. [Google Scholar] [CrossRef]
- AlOmar, D.; Fuchslocher, R.; Cuevas, J.; Mardones, R.; Cuevas, E. Prediction of the composition of fresh pastures by near infrared reflectance or interactance-reflectance spectroscopy. Chil. J. Agric. Res. 2009, 69, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chem. Eur. J. 2021, 27, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, C.; Antonucci, F.; Costa, C.; Marti, A.; Menesatti, P. Application of near-infrared handheld spectrometers to predict semolina quality. J. Sci. Food Agric. 2021, 101, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, H.G.; Kovacs, Z.; Toth, T.; Bazar, G. The recent advances of near-infrared spectroscopy in dairy production—A review. Crit. Rev. Food Sci. Nutr. 2020, 1–22. [Google Scholar] [CrossRef]
- Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures. J. Appl. Anim. Res. 2019, 47, 514–520. [Google Scholar] [CrossRef]
- Alomar, D.; Fuchslocher, R.; de Pablo, M. Effect of preparation method on composition and NIR spectra of forage samples. Anim. Feed. Sci. Technol. 2003, 107, 191–200. [Google Scholar] [CrossRef]
- Suárez, P.L.; Soldado, A.; González-Arrojo, A.; Vicente, F.; de la Roza-Delgado, B. Rapid on-site monitoring of fatty acid profile in raw milk using a handheld near infrared sensor. J. Food Compos. Anal. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Da Silva, J.M.; Paixão, L.; Carreira, E.; Carmona-Cabezas, R.; Nogales-Bueno, J.; Rato, A.E. Evaluation of Near Infrared Spectroscopy (NIRS) and Remote Sensing (RS) for Estimating Pasture Quality in Mediterranean Montado Ecosystem. Appl. Sci. 2020, 10, 4463. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M.; Paixão, L.; de Carvalho, M.; Moral, F.; Nogales-Bueno, J.; Teixeira, R.; Jongen, M.; Domingos, T.; et al. Evaluation of Near Infrared Spectroscopy (NIRS) for Estimating soil organic matter and phosphorus in Mediterranean Montado Ecosystem. Sustainability 2021, 13, 2734. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, AT, USA, 2005. [Google Scholar]
- Goedhart, P.W. Comparison of multivariate calibration methods for prediction of feeding value by near infrared reflectance spectroscopy. Neth. J. Agric. Sci. 1990, 38, 449–460. [Google Scholar] [CrossRef]
- Davies, A.; Fearn, T. Back to basics: Calibration statistics. Spectrosc. Eur. 2006, 18, 31–32. Available online: http://www.eurolabdanmark.dk/documents/Netvaerk/Kemi/SpecEurope_BackToBasics_CalibrationStats_TD.pdf (accessed on 10 November 2021).
- Almeida, F.M.N. Espectroscopia de Infravermelho Próximo com Transformada de Fourier (FT-NIR) na Caracterização de Farinhas para Alimentação Pueril. Dissertação para obtenção do grau mestre em Engenharia Biológica, Instituto Superior Téc-nico—Universidade Técnica de Lisboa, Lisboa, Portugal, 2009. [Google Scholar]
- Safari, H.; Fricke, T.; Wachendorf, M. Determination of fibre and protein content in heterogeneous pastures using field spectroscopy and ultrasonic sward height measurements. Comput. Electron. Agric. 2016, 123, 256–263. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating Airborne Hyperspectral, Topographic, and Soil Data for Estimating Pasture Quality Using Recursive Feature Elimination with Random Forest Regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Lobos, I.; Inia, I.D.I.A.; Moscoso, C.J.; Pavez, P. Calibration models for the nutritional quality of fresh pastures by nearinfrared reflectance spectroscopy. Cienc. Investig. Agrar. 2019, 46, 234–242. [Google Scholar] [CrossRef]
- Hermansen, C.; Norgaard, T.; de Jonge, L.W.; Moldrup, P.; Müller, K.; Knadel, M. Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy. Geoderma 2020, 360, 114009. [Google Scholar] [CrossRef]
- Versari, A.; Laurie, F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Mendarte, S.; Ibarra, A.; Garbisu, C.; Besga, G. Use of portable NIRS equipment in field conditions to determine the nutritional value of mountain pastures. In Proceedings of the 23th General Meeting of the European Grassland Federation, Kiel, Germany, 29 August–2 September 2010; Schnyder, H., Isselstein, J., Taube, F., Auerswald, K., Schellberg, J., Wachendorf, M., Herrmann, A., Gierus, M., Wrage, N., Hopkins, A., Eds.; pp. 244–246. [Google Scholar]
- Reeves, J.B., III. Use of near infrared reflectance spectroscopy. In Farm Animal Metabolism and Nutrition; D’Mello, J.P.F., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 185–207. [Google Scholar]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Malegori, C.; Marques, E.J.N.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Ghajar, S.; Tracy, B. Proximal Sensing in Grasslands and Pastures. Agriculture 2021, 11, 740. [Google Scholar] [CrossRef]
Date | Field Code | N | FDN % | CP % | ||
---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | |||
30/03/2021 | Mitra A | 12 | 40.7 ± 2.0 | 38.8–45.5 | 16.9 ± 2.6 | 14.2–20.9 |
30/03/2021 | Mitra B | 12 | 41.0 ± 2.7 | 37.6–46.8 | 11.6 ± 1.6 | 11.0–15.1 |
01/04/2021 | Mitra C | 24 | 43.2 ± 4.8 | 33.0–51.5 | 11.9 ± 2.1 | 8.2–17.2 |
08/04/2021 | Azinhal | 8 | 56.5 ± 1.4 | 53.7–57.1 | 8.5 ± 0.3 | 8.2–8.9 |
08/04/2021 | Grous | 8 | 46.8 ± 2.9 | 42.4–49.8 | 11.4 ± 0.8 | 10.6–12.9 |
09/04/2021 | Murteiras | 8 | 49.4 ± 2.7 | 46.4–54.5 | 13.3 ± 1.6 | 10.4–15.0 |
09/04/2021 | Padres | 8 | 52.8 ± 2.9 | 46.9–54.5 | 13.7 ± 1.2 | 12.4–14.9 |
13/04/2021 | Tapada dos Números | 8 | 56.9 ± 2.0 | 52.7–58.6 | 12.1 ± 2.2 | 11.2–16.3 |
Pre_Processing | Calibration Model | Internal Validation Model | ||||||
---|---|---|---|---|---|---|---|---|
NDF | LV | R2 | RMSE | LV | R2 | RMSE | Bias | RPD |
raw spectra | 5 | 0.730 | 3.302 | 5 | 0.690 | 3.628 | 0.056 | 1.75 |
SNV | 5 | 0.639 | 3.996 | 5 | 0.473 | 4.962 | −0.279 | 1.35 |
1st derivative | 5 | 0.745 | 3.142 | 5 | 0.649 | 3.834 | −0.024 | 1.64 |
SNV + 1st derivative | 6 | 0.693 | 3.371 | 6 | 0.496 | 4.26 | 0.098 | 1.44 |
CP | ||||||||
raw spectra | 5 | 0.510 | 2.073 | 5 | 0.360 | 2.368 | 0.000 | 1.26 |
SNV | 4 | 0.405 | 2.450 | 4 | 0.299 | 2.690 | 0.008 | 1.36 |
1st derivative | 3 | 0.309 | 2.378 | 3 | 0.200 | 2.584 | 0.001 | 1.36 |
SNV + 1st derivative | 2 | 0.325 | 2.506 | 2 | 0.263 | 2.722 | 0.079 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreira, E.; Serrano, J.; Shahidian, S.; Nogales-Bueno, J.; Rato, A.E. Real-Time Quantification of Crude Protein and Neutral Detergent Fibre in Pastures under Montado Ecosystem Using the Portable NIR Spectrometer. Appl. Sci. 2021, 11, 10638. https://doi.org/10.3390/app112210638
Carreira E, Serrano J, Shahidian S, Nogales-Bueno J, Rato AE. Real-Time Quantification of Crude Protein and Neutral Detergent Fibre in Pastures under Montado Ecosystem Using the Portable NIR Spectrometer. Applied Sciences. 2021; 11(22):10638. https://doi.org/10.3390/app112210638
Chicago/Turabian StyleCarreira, Emanuel, João Serrano, Shakib Shahidian, Julio Nogales-Bueno, and Ana Elisa Rato. 2021. "Real-Time Quantification of Crude Protein and Neutral Detergent Fibre in Pastures under Montado Ecosystem Using the Portable NIR Spectrometer" Applied Sciences 11, no. 22: 10638. https://doi.org/10.3390/app112210638
APA StyleCarreira, E., Serrano, J., Shahidian, S., Nogales-Bueno, J., & Rato, A. E. (2021). Real-Time Quantification of Crude Protein and Neutral Detergent Fibre in Pastures under Montado Ecosystem Using the Portable NIR Spectrometer. Applied Sciences, 11(22), 10638. https://doi.org/10.3390/app112210638