High-Intensity Conditioning for Combat Athletes: Practical Recommendations
Abstract
:1. Introduction
2. General Physiological Demands of Combat Sports
Sport | Duration of Round (min) | Recovery between Rounds (min) | Maximum Number of Rounds | Total Duration (min) | High-Intensity Activity Profile (Activity to Rest Ratio) | Estimated Maximum Aerobic Capacity (ml·kg·min−1) | Sport Characterization |
---|---|---|---|---|---|---|---|
Boxing [19] | 3 | 1 | 12 | 47 | 1:1 to 1:3 | 65 | High-intensity impact sport |
Kickboxing [20] | 2 | 1 | 12 | 35 | 1:2 to 1:5 | 60 | Short-duration, high-intensity bursts of activity |
MMA [1] | 5 | 1 | 5 | 29 | 1:4 to 1:5 | 63 | High-intensity impact sport |
Judo [21] | 5 | NA | NA | 5 | 2:1 to 3:1 | 50 | High-intensity impact sport |
Wrestling [22] | 3 | 0.5 | 2 | 6.5 | Data not available | 55 | Intermittent high-intensity activity |
Taekwondo [23] | 2 | 1 | 3 | 8 | 1:6 to 1:4 | 63 | Short bouts of rapid high-intensity activity |
3. Factors Influencing High-Intensity Conditioning
3.1. Competition Schedule
3.2. Weight Classification and Making Weight
3.3. Training History
4. Periodization of Training
5. Periodization of High-Intensity Conditioning
5.1. General Preparation
5.2. Special Preparation
5.3. Early Fight Camp
5.4. Late Fight Camp
5.5. Transition
6. Physiological Targets of High-Intensity Conditioning
6.1. Defining Training Type
- SIT: <30 s maximal exertion RPE 10/10—example 30 s maximum sprints [44].
- SET: from 30 to 60 s prescribed as ISO RPE 9/10—example 30 s × 8 with 3 min recovery [45].
- BUFF: intensities that elicit blood lactate concentrations between 8 and 12 mmol/L ISO-RPE of 8/10—example 6 × 2 min with 3 min recovery [8].
- HIIT: intervals from 2 to 20 min prescribed as an ISO-RPE of 9/10, 90% maximum heart rate, or 90–95% O2max—example 4 × 8 min with 2 min recovery between intervals [46].
6.2. Sprint Interval Training
6.3. High-Intensity Interval Training
6.4. Muscle Buffer Training
6.5. Speed Endurance Training
7. Integrating Strength Qualities with High-Intensity Conditioning
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, L.P.; Haff, G.G.; Kelly, V.; Beckman, E. Towards a determination of the physiological characteristics distinguishing successful mixed martial arts athletes: A systematic review of combat sport literature. Sports Med. 2016, 46, 1525–1551. [Google Scholar] [CrossRef]
- Ruddock, A.D.; Wilson, D.C.; Thompson, S.W.; Hembrough, D.; Winter, E.M. Strength and conditioning for professional boxing. Strength Cond. J. 2016, 38, 81–90. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangsbo, J. Performance in sports-with specific emphasis on the effect of intensified training. Scand. J. Med. Sci. Sports 2015, 25, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability–Part I. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability–Part II. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Franchini, E. High-intensity interval training prescription for combat-sport athletes. Int. J. Sports Physiol. Perform. 2020, 15, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of high-intensity interval training in combat sports: A systematic review with meta-analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- Chaabène, H.; Hachana, Y.; Franchini, E.; Mkaouer, B.; Montassar, M.; Chamari, K. Reliability and construct validity of the karate-specific aerobic test. J. Strength Cond. Res. 2012, 26, 3454–3460. [Google Scholar] [CrossRef]
- Del Vecchio, F.B.; Hirata, S.M.; Franchini, E. A review of time-motion analysis and combat development in mixed martial arts matches at regional level tournaments. Percept. Mot. Ski. 2011, 112, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Miarka, B.; Brito, C.J.; Moreira, D.G.; Amtmann, J. Differences by ending rounds and other rounds in time-motion analysis of mixed martial arts: Implications for assessment and training. J. Strength Cond. Res. 2018, 32, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Miarka, B.; Coswig, V.S.; Amtmann, J. Long MMA fights technical-tactical analysis of mixed martial arts: Implications for assessment and training. Int. J. Perform. Anal. Sport 2019, 19, 153–166. [Google Scholar] [CrossRef]
- Kirk, C.; Hurst, H.T.; Atkins, S. Measuring the workload of mixed martial arts using accelerometry, time motion analysis and lactate. Int. J. Perform. Anal. Sport 2015, 15, 359–370. [Google Scholar] [CrossRef]
- Hanon, C.; Savarino, J.; Thomas, C. Blood lactate and acid-base balance of world-class amateur boxers after three 3-minute rounds in international competition. J. Strength Cond. Res. 2015, 29, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parolin, M.L.; Spriet, L.L.; Hultman, E.; Hollidge-Horvat, M.G.; Jones, N.L.; Heigenhauser, G.J.F. Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am. J. Physiol. Metab. 2000, 278, E522–E534. [Google Scholar] [CrossRef]
- Smith, M.S. Physiological profile of senior and junior England international amateur boxers. J. Sports Sci. Med. 2006, 5, 74–89. [Google Scholar] [PubMed]
- Slimani, M.; Chaabene, H.; Miarka, B.; Franchini, E.; Chamari, K.; Cheour, F. Kickboxing review: Anthropometric, psychophysiological and activity profiles and injury epidemiology. Biol. Sport 2017, 34, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Franchini, E.; Artioli, G.G.; Brito, C.J. Judo combat: Time-motion analysis and physiology. Int. J. Perform. Anal. Sport 2013, 13, 624–641. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Mkaouer, B.; Franchini, E.; Julio, U.; Hachana, Y. Physical and physiological attributes of wrestlers: An update. J. Strength Cond. Res. 2017, 31, 1411–1442. [Google Scholar] [CrossRef] [PubMed]
- Bridge, C.A.; da Silva Santos, J.F.; Chaabene, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Vanhatalo, A. The ‘Critical Power’ concept: Applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017, 47, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Chidnok, W.; Dimenna, F.J.; Bailey, S.; Vanhatalo, A.; Morton, R.H.; Wilkerson, D.P.; Jones, A.M. Exercise tolerance in intermittent cycling. Med. Sci. Sports Exerc. 2012, 44, 966–976. [Google Scholar] [CrossRef]
- Billat, V.; Binsse, V.; Petit, B.; Koralsztein, J.J. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch. Physiol. Biochem. 1998, 106, 38–45. [Google Scholar] [CrossRef]
- Bell, L.; Ruddock, A.; Maden-Wilkinson, T.; Rogerson, D. Overreaching and overtraining in strength sports and resistance training: A scoping review. J. Sports Sci. 2020, 38, 1897–1912. [Google Scholar] [CrossRef]
- Bell, L.; Ruddock, A.; Maden-Wilkinson, T.; Hembrough, D.; Rogerson, D. “Is it overtraining or just work ethic?”: Coaches’ perceptions of overtraining in high-performance strength sports. Sports 2021, 9, 85. [Google Scholar] [CrossRef]
- Reale, R.J.; Slater, G.; Burke, L.M. Individualised dietary strategies for Olympic combat sports: Acute weight loss, recovery and competition nutrition. Eur. J. Sport Sci. 2017, 17, 727–740. [Google Scholar] [CrossRef]
- Franchini, E.; Brito, C.J.; Artioli, G.G. Weight loss in combat sports: Physiological, psychological and performance effects. J. Int. Soc. Sports Nutr. 2012, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Reale, R.; Dunican, I.; Slater, G.; Burke, L.M. Water loading in combat sport athletes as a means to acutely manipulate body mass. Med. Sci. Sports Exerc. 2017, 49, 680. [Google Scholar] [CrossRef]
- Reale, R.; Slater, G.; Burke, L.M. Acute-weight-loss strategies for combat sports and applications to Olympic success. Int. J. Sports Physiol. Perform. 2017, 12, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Bromley, S.J.; Drew, M.K.; Talpey, S.; McIntosh, A.S.; Finch, C.F. A systematic review of prospective epidemiological research into injury and illness in Olympic combat sport. Br. J. Sports Med. 2018, 52, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Plisk, S.S.; Stone, M.H. Periodization Strategies. Strength Cond. J. 2003, 25, 19–37. [Google Scholar] [CrossRef]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.; Loenneke, J.P.; Anderson, J.C. Concurrent training. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Bosquet, L.; Montpetit, J.; Arvisais, D.; Mujika, I. Effects of tapering on performance. Med. Sci. Sports Exerc. 2007, 39, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Haugen, T.; Paulsen, G.; Seiler, S.; Sandbakk, Ø. New records in human power. Int. J. Sports Physiol. Perform. 2018, 13, 678–686. [Google Scholar] [CrossRef]
- Robinson, S.; Edwards, H.T.; Dill, D.B. New records in human power. Science 1937, 85, 409–410. [Google Scholar] [CrossRef]
- Åstrand, P.-O. New Records in Human Power. Nat. Cell Biol. 1955, 176, 922–923. [Google Scholar] [CrossRef]
- Lundby, C.; Montero, D.; Joyner, M. Biology of VO2max: Looking under the physiology lamp. Acta Physiol. 2016, 220, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.A.; Lundby, C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J. Appl. Physiol. 2013, 114, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hostrup, M.; Bangsbo, J. Limitations in intense exercise performance of athletes-effect of speed endurance training on ion handling and fatigue development. J. Physiol. 2017, 595, 2897–2913. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.; Rakobowchuck, M.; MacDonald, M.; McGee, S.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Iaia, F.M.; Bangsbo, J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand. J. Med. Sci. Sports 2010, 20, 11–23. [Google Scholar] [CrossRef]
- Sylta, Ø.; Tønnessen, E.; Sandbakk, Ø.; Hammarström, D.; Danielsen, J.; Skovereng, K.; Rønnestad, B.R.; Seiler, S. Effects of high-intensity training on physiological and hormonal adaptions in well-trained cyclists. Med. Sci. Sports Exerc. 2017, 49, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Koral, J.; Oranchuk, D.J.; Herrera, R.; Millet, G.Y. Six sessions of sprint interval training improves running performance in trained athletes. J. Strength Cond. Res. 2018, 32, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Fiorenza, M.; Gunnarsson, T.P.; Hostrup, M.; Iaia, F.M.; Schena, F.; Pilegaard, H.; Bangsbo, J. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J. Physiol. 2018, 596, 2823–2840. [Google Scholar] [CrossRef]
- Bacon, A.P.; Carter, R.E.; Ogle, E.A.; Joyner, M.J. VO2max trainability and high intensity interval training in humans: A meta-analysis. PLoS ONE 2013, 8, e73182. [Google Scholar] [CrossRef]
- Weston, M.; Taylor, K.L.; Batterham, A.M.; Hopkins, W.G. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Med. 2014, 44, 1005–1017. [Google Scholar] [CrossRef] [Green Version]
- Tønnessen, E.; Sylta, Ø.; Haugen, T.A.; Hem, E.; Svendsen, I.S.; Seiler, S. The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS ONE 2014, 9, e101796. [Google Scholar] [CrossRef] [Green Version]
- Stöggl, T.L.; Sperlich, B. The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 2015, 6, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edge, J.; Hill-Haas, S.; Goodman, C.; Bishop, D. Effects of resistance training on H+ regulation, buffer capacity, and repeated sprints. Med. Sci. Sports Exerc. 2006, 38, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Edge, J.; Bishop, D.; Goodman, C. The effects of training intensity on muscle buffer capacity in females. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 96, 97–105. [Google Scholar] [CrossRef]
- Nielsen, J.J.; Mohr, M.; Klarskov, C.; Kristensen, M.; Krustrup, P.; Juel, C.; Bangsbo, J. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J. Physiol. 2004, 554, 857–870. [Google Scholar] [CrossRef]
- Iaia, F.M.; Thomassen, M.; Kolding, H.; Gunnarsson, T.P.; Wendell, J.; Rostgaard, T.; Nordsborg, N.; Krustrup, P.; Nybo, L.; Hellsten, Y.; et al. Reduced volume but increased training intensity elevates muscle Na+-K+ pump α1-subunit and NHE1 expression as well as short-term work capacity in humans. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R966–R974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, J.D.; Joo, C.H.; Jeong, T.-S.; Louhelainen, J.; Cochran, A.J.; Gibala, M.J.; Gregson, W.; Close, G.; Drust, B.; Morton, J.P. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J. Appl. Physiol. 2012, 112, 1135–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, J.D.; Louhelainen, J.; Iqbal, Z.; Cochran, A.J.; Gibala, M.J.; Gregson, W.; Close, G.; Drust, B.; Morton, J.P. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis. Am. J. Physiol. Integr. Comp. Physiol. 2013, 304, R450–R458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.H.; Sanborn, K.I.M.; O’Bryant, H.S.; Hartman, M.; Stone, M.E.; Proulx, C.; Ward, B.; Hruby, J. Maximum strength-power-performance relationships in collegiate throwers. J. Strength Cond. Res. 2003, 17, 739–745. [Google Scholar] [CrossRef]
- Pallares, J.G.; Izquierdo, M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med. 2011, 41, 329–343. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.; Connick, M.J.; Hoffman, B.W.; Beckman, E.M. The impact of strength level on adaptations to combined weightlifting, plyometric, and ballistic training. Scand. J. Med. Sci. Sports 2017, 28, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Minetti, A.; Di Prampero, P. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: Theory and facts. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 88, 193–202. [Google Scholar] [CrossRef]
- Kostikiadis, I.N.; Methenitis, S.; Tsoukos, A.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. The effect of short-term sport-specific strength and conditioning training on physical fitness of well-trained mixed martial arts athletes. J. Sports Sci. Med. 2018, 17, 348–358. [Google Scholar] [PubMed]
Modality | Structure | Aerobic | Anaerobic | Neuromuscular | Technical | |
---|---|---|---|---|---|---|
Sport specific | BJJ/wrestling | Drilling | ++ | + | + | +++ |
Open rolling | +++ | + | + | ++ | ||
Scenario rolling (i.e., shark tank) | +++ | ++ | ++ | + | ||
Striking | Technique | + | + | ++ | +++ | |
Sparring | ++ | +++ | +++ | + | ||
Drilling | ++ | +++ | +++ | ++ | ||
Combined (MMA) | Technique | + | ++ | + | +++ | |
Sparring | ++ | +++ | +++ | ++ | ||
Generic | Cycling, rowing, other non-ballistic activities | Modifiable | Dependent on structure | + | - | |
Running | ++ | - | ||||
Resistance circuit | ++ | + |
Focus | Weeks 0–4 General Preparation | Week 5–8 Specific Preparation | Week 9–12 Pre-Competition | Week 13–16 Competition | Transition | |
---|---|---|---|---|---|---|
Conditioning | Primary | Sports specific drilling (RPE 3–5) Sprint interval training (RPE 10) | Sports specific drilling (RPE 5–7) Short HIIT (RPE 8–9) | Sports specific sparring (RPE 5–7) Muscle buffer training (RPE 7–8) | Sports specific sparring (RPE 7–9) Speed endurance (RPE 7–8) | Dependent on individual factors: post-bout injury and fatigue status. Objective is to allow rejuvenation, but minimise decay of physical qualities. |
Secondary | Recovery and endurance focussed conditioning (RPE 1–3) | Sports specific sparring (RPE 3–5) Long HIIT (RPE 8–9) | Sports specific drilling (RPE 3 -5) Recovery based conditioning (RPE 1–3) | Sports specific drilling (RPE 5-7) | ||
Tertiary | Sports specific sparring (RPE 3–5) | Recovery based conditioning (RPE 1–3) | Speed endurance (RPE 3–5) | Short HIIT/specific time–motion patterns Speed and high-rate of force development (RPE 3–5) | ||
Resistance Training | Primary | Hypertrophy, strength endurance, muscle balance | Basic strength | Basic strength | Maximal strength and rate of force development (high velocity emphasis) | |
Secondary | Basic strength | Hypertrophy, strength endurance, muscle balance | Rate of force development (high force emphasis) | Basic strength | ||
Tertiary | Rate of force development (technique development) | Rate of force development (technique development) | Strength endurance | Strength endurance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruddock, A.; James, L.; French, D.; Rogerson, D.; Driller, M.; Hembrough, D. High-Intensity Conditioning for Combat Athletes: Practical Recommendations. Appl. Sci. 2021, 11, 10658. https://doi.org/10.3390/app112210658
Ruddock A, James L, French D, Rogerson D, Driller M, Hembrough D. High-Intensity Conditioning for Combat Athletes: Practical Recommendations. Applied Sciences. 2021; 11(22):10658. https://doi.org/10.3390/app112210658
Chicago/Turabian StyleRuddock, Alan, Lachlan James, Duncan French, David Rogerson, Matthew Driller, and David Hembrough. 2021. "High-Intensity Conditioning for Combat Athletes: Practical Recommendations" Applied Sciences 11, no. 22: 10658. https://doi.org/10.3390/app112210658
APA StyleRuddock, A., James, L., French, D., Rogerson, D., Driller, M., & Hembrough, D. (2021). High-Intensity Conditioning for Combat Athletes: Practical Recommendations. Applied Sciences, 11(22), 10658. https://doi.org/10.3390/app112210658