Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Batch Experiments
2.4. Analytical and Characterization Methods
2.5. Assessment of Water Quantity
3. Results
3.1. Batch Experiments
3.2. Removal of Ammonium and Phosphate in PAP Systems
3.3. Water Quantity Assessment
3.4. Ammonium and Phosphate Adhesion onto Loaded MZP-PM
3.4.1. Ammonium Adhesion onto Loaded MZP-PM
3.4.2. Phosphate Speciation onto Loaded MZP-PM
3.5. Adsorption Mechanism
3.5.1. SEM-EDS Study
3.5.2. FTIR Study
3.5.3. XPS Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Macedo, M.B.; do Lago, C.A.F.; Mendiondo, E.M. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar] [CrossRef]
- Lintern, A.M.; DeLetic, A.; Leahy, P.J.; McCArthy, D.T. Digging up the dirty past: Evidence for stormwater’s contribution to pollution of an urban floodplain lake. Mar. Freshw. Res. 2015, 66, 596–608. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Sha, A.; Xiao, J.; Li, Y.; Huang, Y. Experimental study on filtration effect and mechanism of pavement runoff in permeable asphalt pavement. Constr. Build. Mater. 2015, 100, 102–110. [Google Scholar] [CrossRef]
- Kumar, K.; Kozak, J.; Hundal, L.; Cox, A.; Zhang, H.; Granato, T. In-situ infiltration performance of different permeable pavements in a employee used parking lot—A four-year study. J. Environ. Manag. 2016, 167, 8–14. [Google Scholar] [CrossRef]
- Tippler, C.; Wright, I.A.; Davies, P.J.; Hanlon, A. The influence of concrete on the geochemical qualities of urban streams. Mar. Freshw. Res. 2014, 65, 1009. [Google Scholar] [CrossRef]
- Braswell, A.S.; Winston, R.J.; Hunt, W.F. Hydrologic and water quality performance of permeable pavement with internal water storage over a clay soil in Durham, North Carolina. J. Environ. Manag. 2018, 224, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Razzaghmanesh, M.; Borst, M. Long-term effects of three types of permeable pavements on nutrient infiltrate concentrations. Sci. Total Environ. 2019, 670, 893–901. [Google Scholar] [CrossRef] [PubMed]
- He, B.J.; Zhu, J.; Zhao, D.X.; Gou, Z.H.; Qi, J.D.; Wang, J. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
- Wright, I.A.; Davies, P.J.; Findlay, S.J.; Jonasson, F.O.J. A new type of water pollution: Concrete drainage infrastructure and geochemical contamination of urban waters. Mar. Freshw. Res. 2011, 62, 1355–1361. [Google Scholar] [CrossRef]
- Collins, K.; Hunt, W.; Hathaway, J. Side-by-Side Comparison of Nitrogen Species Removal for Four Types of Permeable Pavement and Standard Asphalt in Eastern North Carolina. J. Hydrol. Eng. 2010, 15, 512–521. [Google Scholar] [CrossRef]
- Drake, J.; Bradford, A.; Van Seters, T. Stormwater quality of spring–summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement. J. Environ. Manag. 2014, 139, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Guan, L.; Jing, Z.; Zhang, Z.; Wang, Y. Influence of filter layer positions and hydraulic retention time on removal of nitrogen and phosphorus by porous asphalt pavement. Water Sci. Technol. 2020, 81, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, T.K.; Davis, A.P. Evaluation of an enhanced treatment media and permeable pavement base to remove stormwater nitrogen, phosphorus, and metals under simulated rainfall. Water Res. 2019, 166, 115071.1–115071.12. [Google Scholar] [CrossRef]
- Kuruppu, U.; Rahman, A.; Sathasivan, A. Enhanced denitrification by design modifications to the standard permeable pavement structure. J. Clean. Prod. 2019, 237, 117721. [Google Scholar] [CrossRef]
- Davis, A.; Liu, J. Phosphorus Speciation and Treatment Using Enhanced Phosphorus Removal Bioretention. Environ. Sci. Technol. 2013, 48, 607–614. [Google Scholar]
- He, Y.; Lin, H.; Dong, Y.; Wang, L. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism. Appl. Surf. Sci. 2017, 426, 995–1004. [Google Scholar] [CrossRef]
- Shen, D.; Li, T.; Shen, F.; Wang, Z. Phosphate adsorption on lanthanum loaded biochar. Chemosphere 2016, 150, 1–7. [Google Scholar]
- Zhao, Y.; Zhou, S.; Zhao, C.; Valeo, C.J.W. The Influence of Geotextile Type and Position in a Porous Asphalt Pavement System on Pb (II) Removal from Stormwater. Nansosale 2018, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L.J.C. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite. Chemosphere 2016, 164, 387–395. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, P.; Chen, H.Y.; Zou, J.; Yuan, Z.; Yu, C. Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal. J. Mater. Chem. 2012, 22, 9983–9990. [Google Scholar] [CrossRef]
- Ergas, S.J.; Sengupta, S.; Siegel, R.; Pandit, A.; Yao, Y.; Yuan, X. Performance of Nitrogen-Removing Bioretention Systems for Control of Agricultural Runoff. J. Environ. Manag. 2010, 136, 1105–1112. [Google Scholar] [CrossRef]
- Lucke, T.; Nichols, P.W.B. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Sci. Total Environ. 2015, 536, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.J.R. Cumulative equations for continuous time Chicago hyetograph method. RBRH 2016, 21, 646–651. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Nitrogen retention and purification efficiency from rainfall runoff via retrofitted bioretention cells. Sep. Purif. Technol. 2019, 220, 25–32. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gsiorek, M.; Zadrony, P.; Orowska, K.J.C. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.; Ma, L.; Cao, D.; Owens, G.; Chen, Z. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite. Sci. Total Environ. 2019, 703, 135002. [Google Scholar] [CrossRef]
- Huo, H.; Hai, L.; Dong, Y.; Huang, C.; Han, W.; Cao, L. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229–230, 292–297. [Google Scholar] [CrossRef]
- Chen, Y. Study on Ammonia Nitrogen Removal from Simulated Wastewater by Macroporous Sintered Zeolite Ball. Master’s Thesis, Hangzhou Normal University, Hangzhou, China, 2018. [Google Scholar]
- Kuroki, V.; Bosco, G.E.; Fadini, P.S.; Mozeto, A.A.; Cestari, A.R.; Carvalho, W. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media. J. Hazard. Mater. 2014, 274, 124–131. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, Y.; Yu, G.; He, N.; Zhang, L.; Wang, Y. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China. J. Clean. Prod. 2018, 208. [Google Scholar] [CrossRef]
- Wan, C.; Ding, S.; Zhang, C.; Tan, X.; Zou, W.; Liu, X.; Yang, X.J.S.; Technology, P. Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: Mechanism and application. Sep. Purif. Technol. 2017, 180, 1–12. [Google Scholar] [CrossRef]
- Ghavanloughajar, M.; Valença, R.; Le, H.; Rahman, M.; Borthakur, A.; Ravi, S.; Stenstrom, M.; Mohanty, S. Compaction conditions affect the capacity of biochar-amended sand filters to treat road runoff. Sci. Total Environ. 2020, 735, 139180. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment. Environmental Quality Standards for Surface Water; Chinese Environmental Science Press: Beijing, China, 2002.
- Malekian, R.; Eslamian, S.; Mousavi, S.-F.; Mikayilov, F.; Majid, A. Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Appl. Clay Sci. 2011, 51, 323–329. [Google Scholar] [CrossRef]
- Wahab, M.; Jellali, S.; Jedidi, N. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 2010, 101, 5070–5075. [Google Scholar] [CrossRef]
- Makita, Y.; Sonoda, A.; Sugiura, Y.; Ogata, A.; Separation, K.O.J.; Technology, P. Phosphorus Removal from Model Wastewater Using Lanthanum Hydroxide Microcapsules with Poly(Vinyl Chloride) Shells. Sep. Purif. Technol. 2020, 241, 116707. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, F.; Yu, Z.; Wei, J.; Yang, Z.; Ma, C.; Li, Z.; Xu, Z.Y.; Zeng, G. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution. Chemosphere 2017, 396, 1783–1792. [Google Scholar] [CrossRef]
- Zhang, Q.; Teng, J.; Zou, G.; Peng, Q.; Du, Q.; Jiao, T.; Xiang, J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085–7093. [Google Scholar] [CrossRef]
Material | Pollutants | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
Qmax (mg/g) | R2 | KL (L/mg) | KF (mg/g (L/mg)1/n | 1/n | R2 | ||
Limestone | NH4+-N | 1.31 | 0.992 | 0.053 | 0.11 | 0.71 | 0.917 |
TP | 0.55 | 0.997 | 0.103 | 0.17 | 0.59 | 0.981 | |
Zeolite | NH4+-N | 3.34 | 0.986 | 0.036 | 0.32 | 0.43 | 0.956 |
TP | 0.42 | 0.994 | 0.112 | 0.14 | 0.63 | 0.954 | |
MZP-PM | NH4+-N | 9.72 | 0.972 | 0.028 | 0.91 | 0.39 | 0.923 |
TP | 1.23 | 0.965 | 0.32 | 0.23 | 0.49 | 0.946 |
PAP System Materials | Units | NH4+-N | TP |
---|---|---|---|
Influent concentration | mg/L | 5.2 | 1.2 |
Total added | mg | 39 | 9 |
Limestone bed, qtotal | mg | 12.91 | 4.22 |
Zeolite bed, qtotal | mg | 20.28 | 3.47 |
Zeolite bed followed by MZP-PM, qtotal | mg | 32.01 | 7.37 |
Limestone bed a | % | 33.1 | 46.9 |
Zeolite bed a | % | 50.2 | 38.5 |
Zeolite bed followed by MZP-PM a | % | 82.2 | 81.9 |
Qe (N) | IE-N | PA-N | ||||
---|---|---|---|---|---|---|
mg/g | mg/g | % | mg/g | % | ||
7.94 | 6.17 ± 0.21 | 77.8 ± 2.52 | 1.77 ± 0.14 | 22.2 ± 1.76 | ||
Qe (P) | La-P | LB-P | R-P | |||
mg/g | mg/g | % | mg/g | % | mg/g | |
2.07 | 1.33 ± 0.08 | 64.3 ± 3.86 | 0.43 ± 0.11 | 20.78 ± 5.31 | 0.31 ± 0.06 | 14.92 ± 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; He, B.; Zhang, W.; Jing, Z. Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column. Appl. Sci. 2021, 11, 10810. https://doi.org/10.3390/app112210810
Luo H, He B, Zhang W, Jing Z. Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column. Applied Sciences. 2021; 11(22):10810. https://doi.org/10.3390/app112210810
Chicago/Turabian StyleLuo, Hui, Baojie He, Wenhao Zhang, and Zhaoqian Jing. 2021. "Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column" Applied Sciences 11, no. 22: 10810. https://doi.org/10.3390/app112210810