An Appraisal of the Field of Metallomics and the Roles of Metal Ions in Biochemistry and Cell Signaling
Abstract
:1. Introduction
2. Metall omic s
3. Quantity vs. Quality of the Chemical Elements, Homeostatic Control and Interactions among the Chemical Elements in Life Processes
4. Counting the Metal–Protein Interactions with Bioinformatics: Metallproteomes
5. Cellular Metal Metabolism as a Part of Metabolic Pathways and Signal Transduction Networks
6. Metal Buffering, Muffling and Hormonal Control
7. Metal Ion Signaling
8. The Distinction between Essential and Non-Essential Metal Ions
9. Biometal Ions in the Applied Sciences
10. A Call for Multidisciplinary and Interdisciplinary Research: Metametallomics
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Desgreniers, S. A milestone in the hunt for metallic hydrogen. Nature 2020, 577, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. The metals in the biological periodic system of the elements: Concepts and conjectures. Int. J. Mol. Sci. 2016, 17, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraguchi, H. Metallomics as integrated biometal science. J. Anal. At. Spectrom. 2004, 19, 5–14. [Google Scholar] [CrossRef]
- Moulis, J.-M. Cellular dynamics of transition metal exchange on proteins: A challenge but a bonanza for coordination chemistry. Biomolecules 2020, 10, 1584. [Google Scholar] [CrossRef]
- Underwood, E. Trace Elements in Human and Animal Nutrition, 4th ed.; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maret, W. Zinc and human disease. In Interrelations between Essential Metal Ions and Human Disease; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Metal Ions in Life Sciences; Springer Science+Business Media: Dordrecht, The Netherlands, 2013; Volume 13, pp. 389–414. [Google Scholar]
- Stabler, S.P. Vitamin B12 deficiency. N. Engl. J. Med. 2013, 368, 149–160. [Google Scholar] [CrossRef]
- Maret, W.; Wedd, A. (Eds.) Binding, Transport and Storage of Metal Ions in Biological Cells; Royal Society of Chemistry: Cambridge, UK, 2014. [Google Scholar]
- Gulec, S.; Collins, J.F. Molecular mediators governing iron-copper interactions. Annu. Rev. Nutr. 2014, 34, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Role of zinc in δ–aminolevulinate dehydratase. Nutr. Rev. 1980, 38, 255–256.
- Simons, T.J.B. The affinity of human erythrocyte porphobilinogen synthase for Zn2+ and Pb2+. Eur. J. Biochem. 1995, 234, 178–183. [Google Scholar] [CrossRef]
- Maret, W. The bioinorganic chemistry of lead in the context of its toxicity. In Lead: Its Effects on Environment and Health; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Metal Ions in Life Sciences; W. de Gruyter: Berlin, Germany, 2017; Volume 17, pp. 1–20. [Google Scholar]
- Wachnowsky, C.; Fidai, I.; Cowan, J.A. Iron-sulfur cluster biosynthesis and trafficking—Impact on human disease conditions. Metallomics 2018, 10, 9–29. [Google Scholar] [CrossRef]
- Braymer, J.J.; Freibert, S.A.; Rakwalska-Bange, M.; Lill, R. Mechanistic concepts of iron-sulfur biogenesis in biology. Biochim. Biophys. Acta 2021, 1868, 118863. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.L.; Kc, K. Molybdenum and tungsten cofactors and the reactions they catalyze. In Transition Metals and Sulfur—A Strong Relationship for Life; Sosa Torres, M., Kroneck, P., Eds.; W. De Gruyter: Berlin, Germany, 2020; pp. 313–342. [Google Scholar]
- Asowata, E.O.; Olusanya, O.; Abaakil, K.; Chichger, H.; Srai, S.K.S.; Unwin, R.J.; Marks, J. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiol. 2021, 232, e13650. [Google Scholar] [CrossRef]
- Vallee, B.L.; Auld, D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990, 29, 5647–5659. [Google Scholar] [CrossRef]
- Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G.L.; Thornton, J.M. Metal ions in biological catalysis: From enzymes databases to general principles. J. Biol. Inorg. Chem. 2008, 13, 1205–1218. [Google Scholar] [CrossRef]
- Thomson, A.J.; Gray, H.B. Bioinorganic chemistry. Curr. Opin. Chem. Biol. 1998, 2, 155–158. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006, 5, 196–201. [Google Scholar] [CrossRef]
- Andreini, C.; Putignano, V.; Rosato, A.; Banci, L. The human iron-proteome. Metallomics 2018, 10, 1223–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 625–796. [Google Scholar] [CrossRef]
- Hogstrand, C.; Maret, W. Genetics of Human Zinc Deficiencies, ELS (Encyclopedia of Life Sciences); John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar] [CrossRef]
- Bayele, H.K.; Srai, S.K.S. A disease-causing mutation K240E disrupts ferroportin trafficking by SUMO (ferroportin SUMOylation). Biochem. Biophys. Rep. 2021, 25, 100873. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Andrews, N.C. Balancing acts: Molecular control of mammalian iron metabolism. Cell 2004, 117, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.J.; Protchenko, O.; Shakoury-Elizeh, M.; Baratz, E.; Jadhav, S.; Philpott, C.C. The iron chaperone and nucleic acid-binding activities of poly(RC)–binding protein 1 are separable and independently essential. Proc. Natl. Acad. Sci. USA 2021, 118, e2104666118. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.M.; Moore, G.R.; Le Brun, N.E. Mechanisms of iron mineralization in ferritins: One size does not fit all. J. Biol. Inorg. Chem. 2014, 19, 775–785. [Google Scholar] [CrossRef]
- Maret, W. The redox biology of redox-inert zinc ions. Free Radic. Biol. Med. 2019, 134, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Krężel, A.; Maret, W. The bioinorganic chemistry of mammalian metallothioneins. Chem. Rev. 2021. [Google Scholar] [CrossRef]
- Maret, W. Zinc and sulfur: A critical biological partnership. Biochemistry 2004, 43, 3301–3309. [Google Scholar] [CrossRef]
- Brawley, H.N.; Lindahl, P.A. Low-molecular-mass labile metal pools in Escherichia coli: Advances using chromatography and mass spectrometry. J. Biol. Inorg. Chem. 2021, 26, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Hider, R.C.; Kong, X.L. Glutathione: A key component of the cytoplasmic labile iron pool. Biometals 2011, 24, 1179–1187. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Mounicou, S.; Lobinski, R. Challenges to metallomics and analytical chemistry solutions. Pure Appl. Chem. 2008, 80, 2565–2575. [Google Scholar] [CrossRef]
- García-Sevillano, M.A.; García-Barrera, T.; Gómez-Ariza, J.L. Application of metallomic and metabolomic approaches in exposure experiments on laboratory mice for environment metal toxicity assessment. Metallomics 2014, 6, 237–248. [Google Scholar] [CrossRef]
- Singh, V.; Verma, K. Metals from cell to environment: Connecting metallomics with other omics. Open J. Plant Sci. 2018, 3, 001–014. [Google Scholar]
- Robinson, N.J.; Glasfeld, A. Metalation: Nature’s challenge in bioinorganic chemistry. J. Biol. Inorg. Chem. 2020, 25, 543–545. [Google Scholar] [CrossRef] [Green Version]
- Irving, H.; Williams, R.J.P. Order of stability of metal complexes. Nature 1948, 162, 746–747. [Google Scholar] [CrossRef]
- Thomas, R.C.; Coles, J.A.; Deitmer, J.W. Homeostatic muffling. Nature 1991, 350, 564. [Google Scholar] [CrossRef]
- Colvin, R.A.; Holmes, W.R.; Fontaine, C.P.; Maret, W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics 2010, 2, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.; Srai, S.K.S. The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Traffic 2018, 19, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [Green Version]
- Wessels, I.; Fischer, H.J.; Rink, L. Dietary and physiological effects of zinc on the immune system. Annu. Rev. Nutr. 2021, 41, 133–175. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef]
- Doboszewska, U.; Wlaź, P.; Nowak, G.; Młyniec, K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br. J. Pharmacol. 2020, 177, 4887–4898. [Google Scholar] [CrossRef]
- Maret, W. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2010, 2, 117–125. [Google Scholar] [CrossRef]
- Grauffel, C.; Dudev, T.; Lim, C. Metal affinity/selectivity of monophosphate-containing signaling/lipid molecules. J. Chem. Theory Comput. 2021, 17, 2444–2456. [Google Scholar] [CrossRef] [PubMed]
- Kanellis, V.G.; Dos Remedios, C.G. A review of heavy metal cation binding to deoxyribonucleic acids for the creation of chemical sensors. Biophys. Rev. 2018, 10, 1401–1414. [Google Scholar] [CrossRef]
- Shamsi, M.H.; Kraatz, H.-B. Interactions of metal ions with DNA and some applications. J. Inorg. Organomet. Polym. Mat. 2013, 23, 4–23. [Google Scholar] [CrossRef]
- Hong, J.; Yang, H.; Pang, D.; Wei, L.; Deng, C. Effects of mono- and di-valent metal cations on the morphology of lipid vesicles. Chem. Phys. Lipids 2018, 217, 19–28. [Google Scholar] [CrossRef]
- Katner, S.J.; Johnson, W.E.; Peterson, E.J.; Page, P.; Farrell, N.P. Comparison of metal-ammine compounds binding to DNA and heparin. Glycans as ligands in bioinorganic chemistry. Inorg. Chem. 2018, 57, 3116–3125. [Google Scholar]
- Zhang, F.; Liang, X.; Beaudet, J.M.; Lee, Y.; Linhardt, R.J. The effects of metal ions on heparin/heparin sulfate-protein interactions. J. Biomed. Technol. Res. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Carafoli, E.; Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 2016, 291, 20849–20857. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, T.; Kambe, T. Zinc Signals in Cellular Functions and Disorders; Springer: Tokyo, Japan, 2014. [Google Scholar]
- Maret, W. Regulation of cellular zinc ions and their signaling functions. In Zinc Signaling, 2nd ed.; Fukuda, T., Kambe, T., Eds.; Springer Nature: Singapore, 2019; pp. 5–22. [Google Scholar]
- Chang, C.J. Searching for harmony in transition-metal signaling. Nat. Chem. Biol. 2015, 11, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.Y.-S.; Posimo, J.M.; Lee, S.; Tsang, T.; Davis, J.M.; Brady, D.C.; Chang, C.J. Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc. Natl. Acad. Sci. USA 2019, 116, 18285–18294. [Google Scholar] [CrossRef] [Green Version]
- Angeletti, B.; Waldron, K.J.; Freeman, K.B.; Bawagan, H.; Hussain, I.; Miller, C.C.; Lau, K.F.; Tennant, M.E.; Dennison, C.; Robinson, N.J.; et al. BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper. J. Biol. Chem. 2005, 280, 17930–17937. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, L.; Cotruvo, J.A., Jr.; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V.S.; Jia, S.; Aron, A.T.; Ackerman, C.M.; Vander Wal, M.N.; et al. Copper regulates cyclic AMP-dependent lipolysis. Nat. Chem. Biol. 2016, 12, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubman, A.; White, A.R. Copper as a key regulator of cell signalling pathways. Expert Rev. Mol. Med. 2014, 16, e11. [Google Scholar] [CrossRef] [PubMed]
- Kardos, J.; László, H.; Simon, A.; Jablonkai, I.; Kovács, R.; Jemnitz, I. Copper signalling: Causes and consequences. Cell Commun. Signal. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, C.M.; Chang, C.J. Copper signaling in the brain and beyond. J. Biol. Chem. 2018, 293, 4628–4635. [Google Scholar] [CrossRef] [Green Version]
- Leary, S.C.; Ralle, M. Advances in visualization of copper in mammalian systems using X-ray fluorescence microscopy. Curr. Opin. Chem. Biol. 2020, 55, 19–25. [Google Scholar] [CrossRef]
- Bal, W.; Kurowska, E.; Maret, W. The final frontier of pH and the undiscovered country beyond. PLoS ONE 2012, 7, e45832. [Google Scholar] [CrossRef] [PubMed]
- Goch, W.; Bal, W. Stochastic or not? Method to predict and quantify the stochastic effects on the association equilibria in nanoscopic systems. J. Phys. Chem. A 2020, 124, 1421–1428. [Google Scholar] [CrossRef]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Haraguchi, H.; Ishii, A.; Hasegawa, T.; Matsuura, H.; Umemura, T. Metallomics on all-elements analysis of salmon egg cells and fractionation analysis of metals in cell cytoplasm. Pure Appl. Chem. 2008, 80, 2595–2608. [Google Scholar] [CrossRef]
- Maret, W. Chromium in Human Health, Metabolic Syndrome, and Diabetes. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; Carver, P.L., Guest, E., Sigel, A., Freisinger, E., Sigel, R.K.O., Eds.; Metal Ions in Life Sciences; W. de Gruyter: Berlin, Germany, 2019; Volume 19, pp. 231–251. [Google Scholar]
- Maret, W. Metallomics: The science of biometals and biometalloids. In Metallomics; Arruda, M.A.Z., Ed.; Springer International Publishing: AG, USA, 2018; Adv. Exp. Med. Biol.; Volume 1055, pp. 1–20. [Google Scholar]
- Schut, G.J.; Thorgersen, M.P.; Poole II, F.L.; Haja, D.K.; Putumbaka, S.; Adams, M.W.W. Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc. Natl. Acad. Sci. USA 2021, 118, e2109008118. [Google Scholar] [CrossRef]
- Maret, W.; Moulis, J.-M. The bioinorganic chemistry of cadmium in the context of its toxicity. In Cadmium: From Toxicity to Essentiality; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Metal Ions in Life Sciences; Springer Science+Business Media: Dordrecht, The Netherlands, 2013; Volume 11, pp. 11–29. [Google Scholar]
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Phil. Trans. R. Soc. 2015, 373, 20140182. [Google Scholar] [CrossRef]
- King, A.H. Our elemental footprint. Nat. Mater. 2019, 18, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Zief, M.; Mitchell, J.M. Contamination Control in Trace Metal Analysis; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Resongles, E.; Dietze, V.; Green, D.C.; Harrison, R.M.; Ochoa-Gonzalez, R.; Tremper, A.H.; Weiss, D.J. Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today. Proc. Natl. Acad. Sci. USA 2021, 118, e2102791118. [Google Scholar] [CrossRef]
- Beans, C. Keeping arsenic out of rice. Proc. Natl. Acad. Sci. USA 2021, 118, e2113071118. [Google Scholar] [CrossRef]
- Selley, L.; Schuster, L.; Marbach, H.; Forsthuber, T.; Forbes, B.; Gant, T.W.; Sandström, T.; Camiña, N.; Athersuch, T.J.; Mudway, I.; et al. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics 2020, 12, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Unosson, J.; Kabéle, M.; Boman, C.; Nyström, R.; Sadiktsis, I.; Westerholm, R.; Mudway, I.S.; Purdie, E.; Raftis, J.; Miller, M.R.; et al. Acute cardiovascular effects of controlled exposure to dilute Petrodiesel and biodiesel exhaust in healthy volunteers: A crossover study. Part. Fibre Toxicol. 2021, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Blower, P.J. Insights into trace metal metabolism in health and disease from PET: “PET metallomics”. J. Nucl. Med. 2018, 59, 1355–1359. [Google Scholar]
- Doble, P.A.; Gonzales de Vega, R.; Bishop, D.P.; Hare, D.J.; Clases, D. Laser ablation-inductively coupled plasma-mass spectrometry imaging in biology. Chem. Rev. 2021, 121, 11769–11822. [Google Scholar] [CrossRef]
- Kutscher, D.; Asogan, D.; Mudway, I.; Brekke, P.; Beales, C.; Wang, X.; Perkins, M.W.; Maret, W.; Stewart, T.J. Imaging of trace elements using laser ablation-inductively coupled plasma-mass spectrometry: Emerging new applications. Spectroscopy 2020, 35, 16–26. [Google Scholar]
- Stewart, T.J. Across the spectrum: Integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics 2019, 11, 29–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M. The ’omes puzzle. Nature 2013, 494, 416–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blower, P. The elusive roles of metals in human health. Available online: www.researchfeatures.com/elusive-roles-metals-human-health (accessed on 11 November 2021).
Protein | Function | Example a |
---|---|---|
Membrane metal ion transport | Export, import—on the plasma membrane or intracellular membranes | Zip (SLC39A) family of zinc tranporters, influx into cytosol (Zn) ZnT (SLC30A) family of zinc transporters, efflux from cytosol (Zn) |
Transport | Cellular, extracellular translocation, distribution, and redistribution | Tranferrin (Fe) Metallothioneins (Zn,Cu) |
Storage | Long term, short term | Ferritin (Fe) Metallothioneins (Zn, Cu) |
Metal buffering | Adjusting steady-state levels of metal ions and control of transients employed in cellular signaling with metal ions. | Metallothioneins (Zn, Cu) |
Chaperoning | Safeguarding metal ions to avoid adventitious reactions, including mismetalation of proteins by transferring the correct metal ion to the protein that requires it. | Iron chaperone, poly(rC) binding protein (PCBP1) Copper chaperone (CCS) for cytosolic superoxide dismutase |
Sensing | Gauging metal ion concentrations and triggering transcriptional (Zn) or post-transcriptional (Fe) responses for regulation. | Iron regulatory proteins (IRP-1, -2) Metal-responsive transcription factor-1 (MTF-1) (Zn) |
Metallocofactor assembly | Insertases, enzymes that insert metal ions into prosthetic groups or cofactors. | Ferrochelatase (Fe) |
Metal acquisition | Metallophores—the majority are low-molecular-weight compounds, but some are proteins. | Siderophores (Fe) Chalcophores (Cu) Zincophores (Zn) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maret, W. An Appraisal of the Field of Metallomics and the Roles of Metal Ions in Biochemistry and Cell Signaling. Appl. Sci. 2021, 11, 10846. https://doi.org/10.3390/app112210846
Maret W. An Appraisal of the Field of Metallomics and the Roles of Metal Ions in Biochemistry and Cell Signaling. Applied Sciences. 2021; 11(22):10846. https://doi.org/10.3390/app112210846
Chicago/Turabian StyleMaret, Wolfgang. 2021. "An Appraisal of the Field of Metallomics and the Roles of Metal Ions in Biochemistry and Cell Signaling" Applied Sciences 11, no. 22: 10846. https://doi.org/10.3390/app112210846
APA StyleMaret, W. (2021). An Appraisal of the Field of Metallomics and the Roles of Metal Ions in Biochemistry and Cell Signaling. Applied Sciences, 11(22), 10846. https://doi.org/10.3390/app112210846