A High-Frequency Vibration Error Compensation Method for Terahertz SAR Imaging Based on Short-Time Fourier Transform
Abstract
:1. Introduction
2. THz-SAR Echoes Signal Model with Vibration Error
2.1. High-Frequency Vibration Error Model of Platform
2.2. THz-SAR Echo Signal Model
3. Compensation Method
3.1. STFT-Based Rough Estimation
3.2. Improved STFT-Based Fine Estimation
3.3. Vibration Compensation Method
4. Simulation Analysis
4.1. Estimation Performance Comparison
4.2. Single-Component Vibration Error Compensation
4.3. Multi-Component Vibration Error Compensation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Redo-Sanchez, A.; Zhang, X. Terahertz science and technology trends. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 260–269. [Google Scholar] [CrossRef]
- Chan, W.; Deibel, J.; Mittleman, D.M. Imaging with terahertz radiation. Rep. Progr. Phys. 2007, 70, 1325–1379. [Google Scholar] [CrossRef]
- Balacey, H.; Recur, B.; Perraud, J.; Sleiman, J.B.; Guillet, J.; Mounaix, P. Advanced processing sequence for 3-D THz imaging. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 191–198. [Google Scholar] [CrossRef]
- Gao, H.; Li, C.; Zheng, S.; Wu, S.; Fang, G. Implementation of the phase shift migration in MIMO-side looking imaging at terahertz band. IEEE Sens. J. 2019, 19, 9384–9393. [Google Scholar] [CrossRef]
- Yang, Q.; Zeng, Y.; Zhang, Y.; Wang, H.; Deng, B.; Qin, Y. Envelope correction of micro-motion targets based on multi-layer perceptron during THz-ISAR sensing. IEEE Access 2019, 7, 183596–183603. [Google Scholar] [CrossRef]
- Gao, H.; Li, C.; Wu, S.; Geng, H.; Zheng, S.; Qu, X.; Fang, G. Study of the extended phase shift migration for three-dimensional MIMO-SAR imaging in terahertz band. IEEE Access 2020, 8, 24773–24783. [Google Scholar] [CrossRef]
- Ding, J.; Kahl, M.; Loffeld, O.; Bolívar, P.H. THz 3-D image formation using SAR techniques: Simulation, processing and experimental results. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 606–616. [Google Scholar] [CrossRef]
- Zhang, B.; Pi, Y.; Li, J. Terahertz imaging radar with inverse aperture synthesis techniques: System structure, signal processing, and experiment results. IEEE Sens. J. 2015, 15, 290–299. [Google Scholar] [CrossRef]
- Kim, S.; Fan, R.; Dominski, F. ViSAR: A 235 GHz radar for airborne applications. In Proceedings of the IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1549–1554. [Google Scholar]
- Zuo, F.; Min, R.; Pi, Y.; Li, J.; Hu, R. Improved method of video synthetic aperture radar imaging algorithm. IEEE Geosci. Remote Sens. Lett. 2019, 16, 897–901. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Lei, P.; Wang, H. High-frequency vibration compensation of helicopter-borne THz-SAR. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1460–1466. [Google Scholar] [CrossRef]
- Liang, Y.; Li, G.; Zhang, G.; Xiang, C.; Wu, J. A nonparametric paired echo suppression method for helicopter-borne SAR imaging. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2080–2084. [Google Scholar] [CrossRef]
- Peng, B.; Wei, X.; Deng, B.; Chen, H.; Liu, Z.; Li, X. A sinusoidal frequency modulation Fourier transform for radar-based vehicle vibration estimation. IEEE Trans. Instrum. Meas. 2014, 63, 2188–2199. [Google Scholar] [CrossRef]
- Shi, S.; Li, C.; Hu, J.; Zhang, X.; Fang, G. A high frequency vibration compensation approach for terahertz SAR based on sinusoidal frequency modulation Fourier transform. IEEE Sens. J. 2021, 21, 10796–10803. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Q.; Li, Y.; Fu, C.; Wang, H. A high frequency vibration compensation approach in Terahertz SAR based on wavelet multi-resolution analysis. In Proceedings of the 2018 China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018; pp. 1–5. [Google Scholar]
- Li, Y.; Ding, L.; Zheng, Q.; Zhu, Y.; Sheng, J. A novel high frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local FrFT. Sensors 2020, 20, 2669. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Huang, L. Target vibration estimation in SAR based on phase-analysis method. EURASIP J. Adv. Signal Process 2016, 94, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Z.; Zhao, B.; Xu, L. Compensation for high-frequency vibration of platform in SAR imaging based on adaptive chirplet decomposition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 792–795. [Google Scholar] [CrossRef]
- Djurović, I.; Popović-Bugarin, V.; Simeunović, M. The STFT-based estimator of micro-doppler parameters. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1273–1283. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Xing, M.; Zhang, Y.; Li, Z. Paired echo suppression algorithm in helicopter-borne SAR imaging. IET Radar Sonar Navig. 2017, 11, 1605–1612. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhao, B.; Xu, L. Enhancement of azimuth focus performance in high-resolution SAR imaging based on the compensation for sensors platform vibration. IEEE Sens. J. 2016, 16, 6333–6345. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhao, B.; Xu, L. Parameters estimation of sinusoidal frequency modulation signal with application in synthetic aperture radar imaging. J. Appl. Remote Sens. 2016, 10, 020502. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Q.; Wu, J.; Li, P.; Zheng, Q.; Ding, L. Estimation of high-frequency vibration parameters for Terahertz SAR imaging based on FrFT with combination of QML and RANSAC. IEEE Access 2021, 9, 5485–5496. [Google Scholar] [CrossRef]
- Djurović, I.; Stanković, L.J. STFT-based estimator of polynomial phase signals. Signal Process 2012, 92, 2769–2774. [Google Scholar] [CrossRef]
- Chum, O.; Matas, J. Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Li, X.; Yin, X. DL-RANSAC: An improved RANSAC with modified sampling strategy based on the likelihood. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 463–468. [Google Scholar]
- Caris, M.; Stanko, S.; Palm, S.; Sommer, R.; Wahlen, A.; Pohl, N. 300 GHz radar for high resolution SAR and ISAR applications. In Proceedings of the 2015 16th International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015; pp. 577–580. [Google Scholar]
- Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V., Jr. Phase gradient autofocus-A robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.; Huang, S. STFT with adaptive window width based on the chirp rate. IEEE Trans. Signal Process. 2012, 60, 4065–4080. [Google Scholar] [CrossRef] [Green Version]
- Kwok, H.K.C.; Jones, D.L. Instantaneous frequency estimation using an adaptive short-time Fourier transform. In Proceedings of the Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 30 October–1 November 1995; pp. 543–547. [Google Scholar]
- Kajbaf, H.; Case, J.T.; Zheng, Y.R.; Kharkovsky, S.; Zoughi, R. Quantitative and qualitative comparison of SAR images from incomplete measurements using compressed sensing and nonuniform FFT. In Proceedings of the 2011 IEEE Radar Con (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 592–596. [Google Scholar]
Parameter | Value |
---|---|
carrier frequency | 220 GHz |
signal bandwidth | 3 GHz |
pulse width | 1.5 μs |
platform velocity | 50 m/s |
slant range | 2296 m |
sample frequency | 2.8 GHz |
pulse repetition frequency | 1050 Hz |
Parameter | G | |||
---|---|---|---|---|
true values | 2.00 | 1.00 | 1.05 | 511.39 |
h = 20 | 2.30 | 9.96 | 0.85 | 119.31 |
hop = 26 | 2.12 | 9.98 | 1.07 | 430.24 |
hop = 26 with RANSAC | 2.02 | 9.98 | 1.05 | 495.60 |
Parameter | IRW (m) | PSLR (dB) | ISLR (dB) |
---|---|---|---|
theoretical values | 0.050 | −11.95 | −13.73 |
h = 20 | 0.064 | −0.21 | −5.38 |
hop = 26 | 0.053 | −7.10 | −8.57 |
hop = 26 with RANSAC | 0.051 | −12.37 | −11.48 |
Parameter | a1|a2 (mm) | f1|f2 (Hz) | G | |
---|---|---|---|---|
true values | 2.00|0.60 | 10.00|20.00 | 1.05|0.52 | 511.48 |
h = 20 | 1.85|0.66 | 9.96|20.23 | 0.93|0.62 | 172.14 |
hop = 26 | 1.90|0.64 | 9.97|19.94 | 1.09|0.62 | 386.56 |
hop = 26 with RANSAC | 2.01|0.59 | 9.97|19.94 | 1.06|0.56 | 464.39 |
Parameter | IRW (m) | PSLR (dB) | ISLR (dB) |
---|---|---|---|
theoretical values | 0.050 | −11.95 | −13.73 |
h = 20 | 0.074 | −2.29 | −5.76 |
hop = 26 | 0.071 | −11.20 | −10.03 |
hop = 26 with RANSAC | 0.062 | −12.72 | −10.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wu, Q.; Jiang, J.; Ding, X.; Zheng, Q.; Zhu, Y. A High-Frequency Vibration Error Compensation Method for Terahertz SAR Imaging Based on Short-Time Fourier Transform. Appl. Sci. 2021, 11, 10862. https://doi.org/10.3390/app112210862
Li Y, Wu Q, Jiang J, Ding X, Zheng Q, Zhu Y. A High-Frequency Vibration Error Compensation Method for Terahertz SAR Imaging Based on Short-Time Fourier Transform. Applied Sciences. 2021; 11(22):10862. https://doi.org/10.3390/app112210862
Chicago/Turabian StyleLi, Yinwei, Qi Wu, Jiawei Jiang, Xia Ding, Qibin Zheng, and Yiming Zhu. 2021. "A High-Frequency Vibration Error Compensation Method for Terahertz SAR Imaging Based on Short-Time Fourier Transform" Applied Sciences 11, no. 22: 10862. https://doi.org/10.3390/app112210862
APA StyleLi, Y., Wu, Q., Jiang, J., Ding, X., Zheng, Q., & Zhu, Y. (2021). A High-Frequency Vibration Error Compensation Method for Terahertz SAR Imaging Based on Short-Time Fourier Transform. Applied Sciences, 11(22), 10862. https://doi.org/10.3390/app112210862