Error Analysis of Integrated Absorbance for TDLAS in a Nonuniform Flow Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Line Shape Theory
2.2. Error Analysis
2.2.1. Simulation of the Nonuniform Absorption Signal
2.2.2. Fitting of the Absorption Signal
2.2.3. Error Analysis under a Nonuniform Flow Field
2.2.4. Typical Range of Line-Shape Parameters
3. Results and Analysis
3.1. Case 1:
3.2. Case 2:
3.3. Case 3:
3.4. Effect of the Line-Shape Function
4. Discussion and Application
4.1. Effect of the Absorption Line Overlap
4.2. Method of Estimating Nonuniformity Error
- (1).
- Firstly, the nonuniform flow field is simplified as a combination of a few quasi-uniform flow field regions.
- (2).
- Secondly, in each region of the quasi-uniform flow field, the line damping parameters, normalization coefficient, and IA are calculated according to the physical and spectral parameters of the flow field.
- (3).
- Thirdly, find the corresponding error in the error distribution according to the line-shape parameter. If the fitting function used in the measurement is that of the Voigt numerical approximation algorithm, then the error distribution is found in the Supplementary Materials when . When , the error distribution can be calculated through the analysis described in Section 2.
- (4).
- Finally, the effect of isolation on the errors needs to be considered. When the isolation of an absorption line is poor, it is necessary to calculate the IA error generated by the absorption line overlap under a uniform flow field. The two errors are added together to obtain the estimated IA error under the nonuniform flow field.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, R.K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 2011, 33, 1–40. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Xu, L. Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review. Appl. Spectrosc. Rev. 2019, 54, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Rieker, G.; Jeffries, J.; Hanson, R.; Mathur, T.; Gruber, M.; Carter, C. Diode laser-based detection of combustor instabilities with application to a scramjet engine. Proc. Combust. Inst. 2009, 32, 831–838. [Google Scholar] [CrossRef]
- Chang, L.S.; Strand, C.L.; Jeffries, J.B.; Hanson, R.K.; Diskin, G.S.; Gaffney, R.L.; Capriotti, D.P. Supersonic Mass-Flux Measurements via Tunable Diode Laser Absorption and Nonuniform Flow Modeling. AIAA J. 2011, 49, 2783–2791. [Google Scholar] [CrossRef] [Green Version]
- Sanders, S.T.; Wang, J.; Jeffries, J.B.; Hanson, R.K. Diode-laser absorption sensor for line-of-sight gas temperature distributions. Appl. Opt. 2001, 40, 4404–4415. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jeffries, J.B.; Hanson, R.K. Measurement of Non-Uniform Temperature Distributions Using Line-of-Sight Absorption Spectroscopy. AIAA J. 2007, 45, 411–419. [Google Scholar] [CrossRef]
- Goldenstein, C.; Schultz, I.A.; Jeffries, J.B.; Hanson, R.K. Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 2013, 52, 7950–7962. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, X.; Sanders, S.T.; Caswell, A.W.; Roy, S.; Plemmons, D.H.; Gord, J.R. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt. Express 2013, 21, 1152–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Kang, G.; Lin, X.; Wang, K.; Yu, X. Diode Laser Absorption Tomography for swirl flames Application. In Fifth International Symposium on Laser Interaction with Matter; Zhao, Y., Ed.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2019. [Google Scholar]
- Li, F.; Yu, X.; Gu, H.; Li, Z.; Zhao, Y.; Ma, L.; Chen, L.; Chang, X. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl. Opt. 2011, 50, 6697–6707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Pineda, D.I.; Goldenstein, C.S.; Spearrin, R.M. Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared. Opt. Express 2018, 26, 20944–20951. [Google Scholar] [CrossRef]
- Liu, C.; Xu, L.; Cao, Z. Measurement of nonuniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods. Appl. Opt. 2013, 52, 4827–4842. [Google Scholar] [CrossRef]
- Cai, W.; Kaminski, C.F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows. Prog. Energy Combust. Sci. 2017, 59, 1–31. [Google Scholar] [CrossRef]
- Guha, A.; Schoegl, I. Tomographic laser absorption spectroscopy using Tikhonov regularization. Appl. Opt. 2014, 53, 8095–8103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Xu, L.; Chen, J.; Cao, Z.; Lin, Y.; Cai, W. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration. Opt. Express 2015, 23, 22494–22511. [Google Scholar] [CrossRef]
- Ouyang, X.; Varghese, P.L. Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers. Appl. Opt. 1989, 28, 3979–3984. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yu, X.; Cai, W.; Ma, L. Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows. Appl. Opt. 2012, 51, 4788–4797. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Werhahn, O.; Ebert, V. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements. Appl. Spectrosc. 2018, 72, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cheong, K.-P.; Yang, M.; Yuan, C.; Ren, W. On the Quantification of Boundary Layer Effects on Flame Temperature Measurements Using Line-of-sight Absorption Spectroscopy. Combust. Sci. Technol. 2021, 1–18. [Google Scholar] [CrossRef]
- Nei, W.; Ye, Q.-H.; Xu, Z.-Y.; Zhang, G.-L.; Xia, H.-H.; Kan, R.-F. Study on the method of voigt profiles two wings fitting non-uniform flow field absorbance. Spectrosc. Spectr. Anal. 2017, 37, 816–821. [Google Scholar]
- Pogány, A.; Klein, A.; Ebert, V. Measurement of water vapor line strengths in the 1.4-2.7 mu m range by tunable diode laser absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2015, 165, 108–122. [Google Scholar] [CrossRef]
- Emmert, J.; Blume, N.G.; Dreizler, A.; Wagner, S. Data analysis and uncertainty estimation in supercontinuum laser absorption spectroscopy. Sci Rep. 2018, 8, 10312. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Du, Y.; Peng, Z.; Ding, Y. Measurements of spectroscopic parameters of CO2 transitions for Voigt, Rautian, galatry and speed-dependent voigt profiles near 1.43 mu m using the WM-DAS method. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 197–205. [Google Scholar] [CrossRef]
- Philippe, L.C.; Hanson, R.K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 1993, 32, 6090–6103. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.P.; Langlois, S.; Hanson, R.K. Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor. Appl. Opt. 1994, 33, 3296–3307. [Google Scholar] [CrossRef]
- Roston, G.; Obaid, F. Exact analytical formula for Voigt spectral line profile. J. Quant. Spectrosc. Radiat. Transf. 2005, 94, 255–263. [Google Scholar] [CrossRef]
- Armstrong, B. Spectrum line profiles: The Voigt function. J. Quant. Spectrosc. Radiat. Transf. 1967, 7, 61–88. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Zhou, X.; Jeffries, J.; Hanson, R. Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Appl. Phys. 2005, 81, 711–722. [Google Scholar] [CrossRef]
- Bendana, F.A.; Sanders, I.C.; Castillo, J.J.; Hagström, C.G.; Pineda, D.I.; Spearrin, R.M. In-situ thermochemical analysis of hybrid rocket fuel oxidation via laser absorption tomography of CO, CO2, and H2O. Exp. Fluids 2020, 61, 13. [Google Scholar] [CrossRef]
- Skrotzki, J.; Habig, J.C.; Ebert, V. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed. Appl. Phys. 2014, 116, 393–406. [Google Scholar] [CrossRef]
- Lourakis, M.I. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. In Technical Report; Institute of Computer Science, Foundation for Research and Technology: Hellas/Crete, Greece, 2005. [Google Scholar]
- Yin, Z.Q.; Wu, C.; Gong, W.Y.; Gong, Z.K.; Wang, Y.J. Voigt profile function and its maximum. Acta Phys. Sin. 2013, 62, 123301. [Google Scholar]
- Kuntz, M. A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function. J. Quant. Spectrosc. Radiat. Transf. 1997, 57, 819–824. [Google Scholar] [CrossRef]
- Letchworth, K.L.; Benner, D.C. Rapid and accurate calculation of the Voigt function. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 173–192. [Google Scholar] [CrossRef]
- Whiting, E. An empirical approximation to the Voigt profile. J. Quant. Spectrosc. Radiat. Transf. 1968, 8, 1379–1384. [Google Scholar] [CrossRef]
- Zaghloul, M.R.; Ali, A.N. Algorithm 916: Computing the Faddeyeva and Voigt Functions. ACM Trans. Math. Softw. 2011, 38, 22. [Google Scholar] [CrossRef]
- Gautschi, W. Efficient Computation of the Complex Error Function. SIAM J. Numer. Anal. 1970, 7, 187–198. [Google Scholar] [CrossRef]
- Abrarov, S.M.; Quine, B.M. On the Fourier expansion method for highly accurate computation of the Voigt/complex error function in a rapid algorithm. arXiv 2012, arXiv:1205.1768. [Google Scholar]
- Abrarov, S.M.; Quine, B.M. Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation. Appl. Math. Comput. 2011, 218, 1894–1902. [Google Scholar] [CrossRef]
- Abrarov, S.M.; Quine, B.M. A rational approximation for efficient computation of the Voigt function in quantitative spectroscopy. arXiv 2015, arXiv:1504.00322. [Google Scholar] [CrossRef]
- Thomas, J.J.; Eveland, W.C.; Medzon, E.L.; Christian, W.; Wylie, D.E.; Burckhalter, J.H.; Jones, R.H. Hydrolysis of Phthalyl Amino Acid Esters of Fluoroscein in the Presence of Leucine Aminopeptidase. Exp. Biol. Med. 1972, 140, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, L.; Cao, Z.; McCann, H. Reconstruction of Axisymmetric Temperature and Gas Concentration Distributions by Combining Fan-Beam TDLAS With Onion-Peeling Deconvolution. IEEE Trans. Instrum. Meas. 2014, 63, 3067–3075. [Google Scholar] [CrossRef] [Green Version]
Work Condition | Flow Field | Temperature (K) | Water Partial Pressure (Atm) | |
---|---|---|---|---|
Static Pressure (Atm) | Concentration | |||
Swirling Flames | 500 | 1.0 | 0.015 | |
1500 | 1.0 | 0.045 | ||
Oblique shock wave | 900 | 1.0 | 0.1 | |
1440 | 4.0 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, F.; Lin, X.; Yu, X. Error Analysis of Integrated Absorbance for TDLAS in a Nonuniform Flow Field. Appl. Sci. 2021, 11, 10936. https://doi.org/10.3390/app112210936
Li R, Li F, Lin X, Yu X. Error Analysis of Integrated Absorbance for TDLAS in a Nonuniform Flow Field. Applied Sciences. 2021; 11(22):10936. https://doi.org/10.3390/app112210936
Chicago/Turabian StyleLi, Renjie, Fei Li, Xin Lin, and Xilong Yu. 2021. "Error Analysis of Integrated Absorbance for TDLAS in a Nonuniform Flow Field" Applied Sciences 11, no. 22: 10936. https://doi.org/10.3390/app112210936
APA StyleLi, R., Li, F., Lin, X., & Yu, X. (2021). Error Analysis of Integrated Absorbance for TDLAS in a Nonuniform Flow Field. Applied Sciences, 11(22), 10936. https://doi.org/10.3390/app112210936