Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling
Abstract
:1. Introduction
- We discuss the IoT and IIoT system architectures to show their characteristics and their limitations in supporting cloud-based mobile applications, which will help both architects of IoT and IIoT systems and cloud data center administrators.
- We implement two scalable fog computing orchestration algorithms: one is for scheduling and assigning cloud tasks to appropriate edge servers and containers with considerations of signal strength, and the other one is for cloud task migrations that improve the overall reliability of mobile applications by checking and calculating migratability.
- We validate our proposed algorithms by comparing various performance metrics and incorporating mobility pattern data obtained from SUMO.
2. Related Work
3. The Proposed Fog Computing Orchestration Mechanism
Algorithm 1 Task Scheduling Algorithm. | |
Input:Tuple_i | |
Output:Map_i = (Tuple_i, Edge_j, Container_k) | |
Initialization: location ← get_location (Tuple_i); | |
requirement ← get_requirement (Tuple_i); | |
1: | call assign_tuple (Tuple_i); |
2: | function assign_tuple (Tuple_i) |
3: | signal_strength ← 0; |
4: | target_edge ← null; |
5: | target_container ← null; |
6: | found ← false; |
7: | for allEdge_i ∊ Set_Edge (location) do |
8: | current_signal_strength ← get_edge_info (Edge_i, signal); |
9: | if (current_signal_strength > signal_strength) then |
10: | signal_strength ← current_signal_strength; |
11: | target_edge ← Edge_i; |
12: | end if |
13: | end for |
14: | for allContainer_i ∊ target_edge do |
15: | if (Container_i meets requirement) then |
16: | target_container ← Container_i; |
17: | assign_info ← assign_tuple (Tuple_i, target_edge, target_container); |
18: | found ← true; |
19: | end if |
20: | end for |
21: | if (found == false) then |
22: | target_container ← provision_container (target_edge); |
23: | assign_info ← assign_tuple (Tuple_i, target_edge, target_container); |
24: | end if |
25: | return assign_info; |
26: | end function |
Algorithm 2 Task Migration Algorithm. | |
Input:Map_i = (Tuple_i, Edge_j, Container_k) | |
Output:New_Map_i = (Tuple_i, Edge_j, Container_k) | |
Initialization: location ← get_location (Tuple_i); | |
signal_strength ← get_signal_info (Map_i); | |
mobility_speed ← get_mobility_speed (Map_i); | |
mobility_property ← get_mobility_property (Map_i); | |
target_edge ← null; | |
bool_migration ← false; | |
1: | call check_condition (Map_i); |
2: | if (bool_migration) then |
3: | call perform_migration (Map_i, target_edge); |
4: | end if |
5: | function check_condition (Map_i) |
6: | signal_target ← 0; |
7: | for all Edge_i ∊ Near_Edge (Map_i) do |
8: | signal_target ← get_edge_info (Edge_i, signal); |
9: | val_threshold ← threshold(signal_strength, location, mobility_speed); |
10: | if (signal_target > val_threshold) then |
11: | target_edge ← Edge_i; |
12: | end if |
13: | end for |
14: | if (migratability (target_edge, mobility_property)) then |
15: | bool_migration ← true; |
16: | end if |
17: | end function |
18: | function perform_migration (Map_i, target_edge) |
19: | handoff (Map_i, target_edge); |
20: | for all Container_i ∊ target_edge do |
21: | if (Container_i meets requirement) then |
22: | target_container ← Container_i; |
23: | assign_info ← assign_tuple (Tuple_i, target_container); |
24: | found ← true; |
25: | end if |
26: | end for |
27: | if (found == false) then |
28: | target_container ← provision_container (Edge_i); |
29: | assign_info ← assign_tuple (Tuple_i, target_container); |
30: | end if |
31: | migrate_tuple (Map_i, target_container); |
32: | migrate_data (Map_i, target_container); |
33: | sync (Map_i, target_container); |
34: | return New_Map_i = (Tuple_i, target_edge, target_container) |
35: | end function |
4. Evaluation
4.1. Performance Results
4.2. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gadasin, D.V.; Shvedov, A.V.; Ermolovich, A.V. The concept “fog computing”—The evolutionary stage of development of infocommunication technologies. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 14–15 March 2018; pp. 1–3. [Google Scholar]
- Karagiannis, V.; Schulte, S. Comparison of Alternative Architectures in Fog Computing. In Proceedings of the 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC), Melbourne, Australia, 11–14 May 2020; pp. 19–28. [Google Scholar]
- Tange, K.; De Donno, M.; Fafoutis, X.; Dragoni, N. A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing Opportunities. IEEE Commun. Surv. Tutorials 2020, 22, 2489–2520. [Google Scholar] [CrossRef]
- Mostafa, G.-A.; Alireza, S.; Rahmanian, A.A. Resource Management Approaches in Fog Computing: A Comprehensive Review. J. Grid Comput. 2020, 18, 1–42. [Google Scholar] [CrossRef]
- Joshi, V.; Patil, K. A Survey on Energy-Efficient Task Offloading and Virtual Machine Migration for Mobile Edge Computation BT—Data Management, Analytics and Innovation; Sharma, N., Chakrabarti, A., Balas, V.E., Bruckstein, A.M., Eds.; Springer: Singapore, 2022; pp. 333–347. [Google Scholar]
- Paniagua, C.; Delsing, J. Industrial Frameworks for Internet of Things: A Survey. IEEE Syst. J. 2021, 15, 1149–1159. [Google Scholar] [CrossRef]
- Liu, P.; Liu, K.; Fu, T.; Zhang, Y.; Hu, J. A privacy-preserving resource trading scheme for Cloud Manufacturing with edge-PLCs in IIoT. J. Syst. Archit. 2021, 117, 102104. [Google Scholar] [CrossRef]
- Kabbaj, S.; Rahman, A.U.; Malik, A.W.; Baba, A.I.; Ravana, S.D. Time-bound single-path opportunistic forwarding in disconnected industrial environments. Veh. Commun. 2021, 27, 100302. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Bhatia, L.; Kolcun, R.; Boyle, D.; McCann, J.A. Contact-Aware Opportunistic Data Forwarding in Disconnected LoRaWAN Mobile Networks. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 574–583. [Google Scholar]
- Ma, S.; Song, S.; Yang, L.; Zhao, J.; Yang, F.; Zhai, L. Dependent tasks offloading based on particle swarm optimization algorithm in multi-access edge computing. Appl. Soft Comput. 2021, 112, 107790. [Google Scholar] [CrossRef]
- Wang, X.; Ning, Z.; Guo, S. Multi-Agent Imitation Learning for Pervasive Edge Computing: A Decentralized Computation Offloading Algorithm. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 411–425. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Zhou, M.; Abusorrah, A. Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge Computing Paradigm. Sensors 2021, 21, 779. [Google Scholar] [CrossRef]
- Rejiba, Z.; Masip-Bruin, X.; Marín-Tordera, E. A survey on mobility-induced service migration in the fog, edge, and related computing paradigms. ACM Comput. Surv. 2019, 52, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ni, S.; Zhao, P. Learning-based Joint Optimization of Energy-Delay and Privacy in Multiple-User Edge-Cloud Collaboration MEC Systems. IEEE Internet Things J. 2021, 1, 8607. [Google Scholar] [CrossRef]
- Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A Survey on the Computation Offloading Approaches in Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. J. Grid Comput. 2020, 18, 639–671. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, Y.; Wang, K.; Lu, W. Delay Guaranteed Energy-Efficient Computation Offloading for Industrial IoT in Fog Computing. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Krajzewicz, D. Traffic Simulation with SUMO—Simulation of Urban Mobility BT—Fundamentals of Traffic Simulation; Barceló, J., Ed.; Springer: New York, NY, USA, 2010; pp. 269–293. ISBN 978-1-4419-6142-6. [Google Scholar]
- Acosta, A.F.; Espinosa, J.E.; Espinosa, J. Application of the SCRUM Software Methodology for Extending Simulation of Urban Mobility (SUMO) Tools BT—Simulating Urban Traffic Scenarios; Behrisch, M., Weber, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–15. [Google Scholar]
- Roig, P.J.; Alcaraz, S.; Gilly, K.; Juiz, C. Modelling VM Migration in a Fog Computing Environment. Elektron. Elektrotechnika 2019, 25, 75–81. [Google Scholar] [CrossRef]
- Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.-K.R.; Dlodlo, M. From Cloud to Fog Computing: A Review and a Conceptual Live VM Migration Framework. IEEE Access 2017, 5, 8284–8300. [Google Scholar] [CrossRef]
- Puliafito, C.; Virdis, A.; Mingozzi, E. The Impact of Container Migration on Fog Services as Perceived by Mobile Things. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 9–16. [Google Scholar]
- Puliafito, C.; Vallati, C.; Mingozzi, E.; Merlino, G.; Longo, F.; Puliafito, A. Container Migration in the Fog: A Performance Evaluation. Sensors 2019, 19, 1488. [Google Scholar] [CrossRef] [Green Version]
- de Martins, R.J.; Both, C.B.; Wickboldt, J.A.; Granville, L.Z. Virtual Network Functions Migration Cost: From Identification to Prediction. Comput. Netw. 2020, 181, 107429. [Google Scholar] [CrossRef]
- Ponmagal, R.S.; Karthick, S.; Dhiyanesh, B.; Balakrishnan, S.; Venkatachalam, K. Optimized virtual network function provisioning technique for mobile edge cloud computing. J. Ambient Intell. Humaniz. Comput. 2021, 12, 5807–5815. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Fung, C. Fine-Grained Cloud Resource Provisioning for Virtual Network Function. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1363–1376. [Google Scholar] [CrossRef]
- Ma, J.; Kim, H.; Kim, Y. The Virtualization and Performance Comparison with LXC-LXD in ARM64bit Server. In Proceedings of the 2016 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech Republic, 26–29 September 2016; pp. 1–4. [Google Scholar]
- da Cunha, H.G.V.O.; Moreira, R.; de Oliveira Silva, F. A Comparative Study Between Containerization and Full-Virtualization of Virtualized Everything Functions in Edge Computing BT—Advanced Information Networking and Applications; Barolli, L., Woungang, I., Enokido, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 771–782. [Google Scholar]
- Junior, P.S.; Miorandi, D.; Pierre, G. Stateful Container Migration in Geo-Distributed Environments. In Proceedings of the 2020 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Bangkok, Thailand, 14–17 December 2020; pp. 49–56. [Google Scholar]
- Rosário, D.; Schimuneck, M.; Camargo, J.; Nobre, J.; Both, C.; Rochol, J.; Gerla, M. Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support. Sensors 2018, 18, 329. [Google Scholar] [CrossRef] [Green Version]
- Kristiani, E.; Yang, C.-T.; Huang, C.-Y.; Wang, Y.-T.; Ko, P.-C. The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for Air Quality Monitoring Application. Mob. Netw. Appl. 2021, 26, 1070–1092. [Google Scholar] [CrossRef]
- Benomar, Z.; Longo, F.; Merlino, G.; Puliafito, A. Cloud-Based Network Virtualization in IoT with OpenStack. ACM Trans. Internet Technol. 2021, 22, 1–26. [Google Scholar] [CrossRef]
- Puliafito, C.; Vallati, C.; Mingozzi, E.; Merlino, G.; Longo, F. Design and evaluation of a fog platform supporting device mobility through container migration. Pervasive Mob. Comput. 2021, 74, 101415. [Google Scholar] [CrossRef]
- Singh, S.P.; Kumar, R.; Sharma, A.; Nayyar, A. Leveraging energy-efficient load balancing algorithms in fog computing. Concurr. Comput. Pract. Exp. 2020, e5913. [Google Scholar] [CrossRef]
- Gonçalves, D.; Puliafito, C.; Mingozzi, E.; Rana, O.; Bittencourt, L.; Madeira, E. Dynamic Network Slicing in Fog Computing for Mobile Users in MobFogSim. In Proceedings of the 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 7–10 December 2020; pp. 237–246. [Google Scholar]
Study | Scalability | Mobility Support | Live Migration | Migration Criteria | Optimized for Task Reliability |
---|---|---|---|---|---|
[23] | × | × | ○ | Migration time Data transferred | × |
[28] | ○ | ○ | △ | Geo-distribution Migration downtime Disk usage | × |
[29] | × | ○ | Service migration | Quality of experience Video distribution | × |
[32] | △ | ○ | ○ | Round-trip latency Migration downtime | × |
[34] | △ | ○ | ○ | User speed | △ |
Proposed | ○ | ○ | ○ | Location Signal strength Mobility speed and properties | ○ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J. Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling. Appl. Sci. 2021, 11, 10996. https://doi.org/10.3390/app112210996
Lim J. Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling. Applied Sciences. 2021; 11(22):10996. https://doi.org/10.3390/app112210996
Chicago/Turabian StyleLim, Jongbeom. 2021. "Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling" Applied Sciences 11, no. 22: 10996. https://doi.org/10.3390/app112210996
APA StyleLim, J. (2021). Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling. Applied Sciences, 11(22), 10996. https://doi.org/10.3390/app112210996