Comparison between Self-Raman Nd:YVO4 Lasers and NdYVO4/KGW Raman Lasers at Lime and Orange Wavelengths
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voliani, V.; Signore, G.; Vittorio, O.; Faraci, P.; Luin, S.; Peréz-Prieto, J.; Beltram, F. Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres. J. Mater. Chem. B 2013, 1, 4225–4230. [Google Scholar] [CrossRef]
- Palanker, D.; Blumenkranz, M.S.; Weiter, J.J. Retinal laser therapy: Biophysical basis and applications. Protein Sci. 2016, 1, 4. [Google Scholar]
- Zhang, L.; Jiang, H.; Cui, S.; Hu, J.; Feng, Y. Versatile Raman fiber laser for sodium laser guide star. Laser Photonics Rev. 2014, 8, 889–895. [Google Scholar] [CrossRef]
- Jansen, M.; Cantos, B.D.; Carey, G.P.; Dato, R.; Giaretta, G.; Hallstein, S.; Hitchens, W.R.; Lee, D.; Mooradian, A.; Nabiev, R.F.; et al. Visible laser and laser array sources for projection displays. Proc. SPIE 2006, 6135, 61350T. [Google Scholar]
- Lü, Y.; Zhang, X.; Li, S.; Xia, J.; Cheng, W.; Xiong, Z. All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+: LuVO4 crystal. Opt. Lett. 2010, 35, 2964–2966. [Google Scholar] [CrossRef]
- Chen, Y.F.; Liu, Y.C.; Gu, D.Y.; Pan, Y.Y.; Cheng, H.P.; Tsou, C.H.; Liang, H.C. High-power dual-color yellow–green solid-state self-Raman laser. Laser Phys. 2019, 29, 075802. [Google Scholar] [CrossRef]
- Kananovich, A.; Demidovich, A.; Danailov, M.; Grabtchikov, A.; Orlovich, V. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation. Laser Phys. Lett. 2010, 7, 573–578. [Google Scholar] [CrossRef]
- Li, X.; Pask, H.M.; Lee, A.J.; Huo, Y.; Piper, J.A.; Spence, D.J. Miniature wavelength-selectable Raman laser: New insights for optimizing performance. Opt. Express 2011, 19, 25623–25631. [Google Scholar] [CrossRef] [PubMed]
- Dekker, P.; Pask, H.M.; Spence, D.J.; Piper, J.A. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm. Opt. Express 2007, 15, 7038–7046. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Spence, D.J.; Piper, J.A.; Pask, H.M. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible. Opt. Express 2010, 18, 20013–20018. [Google Scholar] [CrossRef]
- Tan, Y.; Fu, X.H.; Zhai, P.; Zhang, X.H. An efficient cw laser at 560 nm by intracavity sum-frequency mixing in a self-Raman Nd:LuVO4 laser. Laser Phys. 2013, 23, 045806. [Google Scholar] [CrossRef]
- Chen, Y.F.; Pan, Y.Y.; Liu, Y.C.; Cheng, H.P.; Tsou, C.H.; Liang, H.C. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal. Opt. Express 2019, 27, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Pask, H.M.; Piper, J.A.; Zhang, H.; Wang, J. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission. Opt. Express 2010, 18, 5984–5992. [Google Scholar] [CrossRef]
- Jakutis-Neto, J.; Lin, J.; Wetter, N.U.; Pask, H. Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths. Opt. Express 2012, 20, 9841–9850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Huang, H.Y.; Lee, C.C.; Hsiao, J.Q.; Tsou, C.H.; Liang, H.C. High-power diode-pumped Nd:GdVO4/KGW Raman laser at 578 nm. Opt. Lett. 2020, 45, 5562–5565. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Y.; Sun, Y.; Chen, Y.; Li, Z.; Zhu, H.; Zhang, G.; Tang, D. Passively Q-switched multiple visible wavelengths switchable YVO4 Raman laser. J. Lumin. 2020, 228, 117650. [Google Scholar] [CrossRef]
- Runcorn, T.H.; Görlitz, F.G.; Murray, R.T.; Kelleher, E.J. Visible Raman-shifted fiber lasers for biophotonic applications. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Alam, S.; Kang, Q.; Shepherd, D.P.; Richardson, D.J. Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible. Opt. Express 2017, 25, 351–356. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, C.M.; Lee, C.C.; Huang, H.Y.; Li, D.; Hsiao, J.Q.; Tsou, C.H.; Liang, H.C. Efficient solid-state Raman yellow laser at 579.5 nm. Opt. Lett. 2020, 45, 5612–5615. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Li, D.; Lee, Y.M.; Lee, C.C.; Huang, H.Y.; Tsou, C.H.; Liang, H.C. Highly efficient solid-state Raman yellow-orange lasers created by enhancing the cavity reflectivity. Opt. Lett. 2021, 46, 797–800. [Google Scholar] [CrossRef]
- Chen, Y.F. Efficient 1521-nm Nd:GdVO4 Raman laser. Opt. Lett. 2004, 29, 2632–2634. [Google Scholar] [CrossRef]
- Demidovich, A.A.; Grabtchikov, A.S.; Lisinetskii, V.A.; Burakevich, V.N.; Orlovich, V.A.; Kiefer, W. Continuous-wave Raman generation in a diode-pumped Nd3+: KGd (WO4)2 laser. Opt. Lett. 2005, 30, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Piper, J.A.; Pask, H.M. Crystalline Raman lasers. IEEE J. Sel. Top. Quant. Electron. 2007, 13, 692–704. [Google Scholar] [CrossRef]
- Grabtchikov, A.S.; Kuzmin, A.N.; Lisinetskii, V.A.; Ryabtsev, G.I.; Orlovich, V.A.; Demidovich, A.A. Stimulated Raman scattering in Nd:KGW laser with diode pumping. J. Alloy. Compd. 2000, 300, 300–302. [Google Scholar] [CrossRef]
- Mochalov, I.V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd (WO4)2:Nd3+-(KGW: Nd). Opt. Eng. 1997, 36, 1660–1669. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-C.; Huang, C.-Y.; Huang, H.-Y.; Chen, C.-M.; Tsou, C.-H. Comparison between Self-Raman Nd:YVO4 Lasers and NdYVO4/KGW Raman Lasers at Lime and Orange Wavelengths. Appl. Sci. 2021, 11, 11068. https://doi.org/10.3390/app112211068
Lee C-C, Huang C-Y, Huang H-Y, Chen C-M, Tsou C-H. Comparison between Self-Raman Nd:YVO4 Lasers and NdYVO4/KGW Raman Lasers at Lime and Orange Wavelengths. Applied Sciences. 2021; 11(22):11068. https://doi.org/10.3390/app112211068
Chicago/Turabian StyleLee, Chi-Chun, Chien-Yen Huang, Hao-Yun Huang, Chao-Ming Chen, and Chia-Han Tsou. 2021. "Comparison between Self-Raman Nd:YVO4 Lasers and NdYVO4/KGW Raman Lasers at Lime and Orange Wavelengths" Applied Sciences 11, no. 22: 11068. https://doi.org/10.3390/app112211068
APA StyleLee, C. -C., Huang, C. -Y., Huang, H. -Y., Chen, C. -M., & Tsou, C. -H. (2021). Comparison between Self-Raman Nd:YVO4 Lasers and NdYVO4/KGW Raman Lasers at Lime and Orange Wavelengths. Applied Sciences, 11(22), 11068. https://doi.org/10.3390/app112211068