A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
N° | C | FA | W | SP | FNA | CNA | RCA | FM of FNA | WA | SSD | TM | Fc | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg | kg | kg | % | kg | kg | kg | % | g/cm3 | mm | MPa | |||
1 | 500 | 0 | 150 | 0.1 | 725 | 1087 | 0 | 2.11 | 1.1 | 2.62 | 10 | 77.2 | [44] |
2 | 400 | 100 | 150 | 0.16 | 707 | 1087 | 0 | 2.11 | 1.1 | 2.62 | 10 | 75.04 | |
3 | 637 | 0 | 150 | 2.89 | 711 | 936 | 0 | 2.16 | 1.1 | 2.62 | 10 | 77.92 | [45] |
4 | 475 | 158 | 150 | 2.89 | 681 | 924 | 0 | 2.16 | 1.1 | 2.62 | 10 | 84.72 | |
5 | 347 | 283 | 148 | 3.76 | 639 | 920 | 0 | 2.16 | 1.1 | 2.62 | 10 | 71.52 | |
6 | 702 | 0 | 135 | 5 | 641 | 949 | 0 | 2.16 | 1.1 | 2.62 | 10 | 77.44 | |
7 | 512 | 173 | 133 | 5.07 | 620 | 932 | 0 | 2.16 | 1.1 | 2.62 | 10 | 81.84 | |
8 | 372 | 305 | 130 | 4.99 | 608 | 927 | 0 | 2.16 | 1.1 | 2.62 | 10 | 70.8 | |
9 | 390 | 0 | 195 | 0 | 768 | 917 | 0 | 2.11 | 1.1 | 2.62 | 20 | 28.64 | [46] |
10 | 312 | 78 | 195 | 0 | 615 | 1143 | 0 | 2.11 | 1.1 | 2.62 | 20 | 31.44 | |
11 | 500 | 0 | 150 | 0.5 | 758 | 927 | 0 | 2.11 | 1.1 | 2.62 | 20 | 68.72 | [47] |
12 | 400 | 100 | 150 | 0.8 | 618 | 1147 | 0 | 2.11 | 1.1 | 2.62 | 20 | 66.16 | |
13 | 350 | 150 | 150 | 0.7 | 615 | 1143 | 0 | 2.11 | 1.1 | 2.62 | 20 | 64.16 | |
14 | 300 | 200 | 150 | 0.7 | 613 | 1139 | 0 | 2.11 | 1.1 | 2.62 | 20 | 61.36 | |
15 | 390 | 0 | 195 | 0 | 768 | 917 | 0 | 2.11 | 1.1 | 2.62 | 20 | 28.64 | |
16 | 273 | 117 | 195 | 0 | 626 | 1133 | 0 | 2.11 | 1.1 | 2.62 | 20 | 31.44 | |
17 | 234 | 156 | 195 | 0 | 625 | 1129 | 0 | 2.11 | 1.1 | 2.62 | 20 | 29.52 | |
18 | 350 | 115 | 175 | 1.6 | 785 | 735 | 0 | 2.64 | 0.85 | 2.63 | 20 | 38.8 | [48] |
19 | 270 | 145 | 160 | 2.23 | 870 | 750 | 0 | 2.64 | 0.85 | 2.63 | 20 | 51.6 | |
20 | 500 | 0 | 150 | 1.5 | 724 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 69.44 | [49] |
21 | 425 | 75 | 150 | 1.5 | 700 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 68.8 | |
22 | 375 | 125 | 150 | 1.85 | 683 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 68.32 | |
23 | 275 | 225 | 150 | 2.1 | 650 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 57.44 | |
24 | 225 | 275 | 150 | 2.6 | 634 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 45.92 | |
25 | 400 | 0 | 160 | 1 | 710 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 48.56 | |
26 | 340 | 60 | 160 | 1.1 | 690 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 44.8 | |
27 | 300 | 100 | 160 | 1.2 | 660 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 39.44 | |
28 | 220 | 180 | 160 | 1.3 | 634 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 35.12 | |
29 | 180 | 220 | 160 | 1.6 | 621 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 29.84 | |
30 | 410 | 0 | 205 | 0 | 609 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 40.64 | |
31 | 348.5 | 61.5 | 205 | 0 | 589 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 39.12 | |
32 | 307.5 | 102.5 | 205 | 0 | 576 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 33.36 | |
33 | 225.5 | 184.5 | 205 | 0 | 549 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 28.48 | |
34 | 184.5 | 225.5 | 205 | 0 | 536 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 19.2 | |
35 | 500 | 0 | 150 | 1.5 | 724 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 66 | [49] |
36 | 425 | 75 | 150 | 1.5 | 700 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 62.32 | |
37 | 375 | 125 | 150 | 1.85 | 683 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 63.28 | |
38 | 275 | 225 | 150 | 2.1 | 650 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 51.2 | |
39 | 225 | 275 | 150 | 2.6 | 634 | 1086 | 0 | 2.16 | 1.1 | 2.62 | 10 | 45.68 | |
40 | 400 | 0 | 160 | 1 | 710 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 44.64 | |
41 | 340 | 60 | 160 | 1.1 | 690 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 35.84 | |
42 | 300 | 100 | 160 | 1.2 | 660 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 35.28 | |
43 | 220 | 180 | 160 | 1.3 | 634 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 26.16 | |
44 | 180 | 220 | 160 | 1.6 | 621 | 1157 | 0 | 2.16 | 1.1 | 2.62 | 20 | 25.92 | |
45 | 410 | 0 | 205 | 0 | 609 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 34.08 | |
46 | 348.5 | 61.5 | 205 | 0 | 589 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 30.48 | |
47 | 307.5 | 102.5 | 205 | 0 | 576 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 28.16 | |
48 | 225.5 | 184.5 | 205 | 0 | 549 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 24.32 | |
49 | 184.5 | 225.5 | 205 | 0 | 536 | 1132 | 0 | 2.16 | 1.1 | 2.62 | 20 | 20.72 | |
50 | 410 | 0 | 225 | 0 | 642 | 1048 | 0 | 2.11 | 1.1 | 2.62 | 20 | 38.88 | [50] |
51 | 410 | 0 | 225 | 0 | 642 | 840 | 204 | 2.11 | 1.62 | 2.61 | 20 | 36.24 | |
52 | 410 | 0 | 225 | 0 | 642 | 524 | 506 | 2.11 | 2.41 | 2.58 | 20 | 34 | |
53 | 410 | 0 | 225 | 0 | 642 | 210 | 814 | 2.11 | 3.22 | 2.56 | 20 | 31.36 | |
54 | 410 | 0 | 225 | 0 | 642 | 0 | 1017 | 2.11 | 3.77 | 2.54 | 20 | 29.68 | |
55 | 307.5 | 102.5 | 225 | 0 | 628 | 1048 | 0 | 2.11 | 1.1 | 2.62 | 20 | 37.68 | |
56 | 307.5 | 102.5 | 225 | 0 | 628 | 840 | 204 | 2.11 | 1.62 | 2.61 | 20 | 35.04 | |
57 | 307.5 | 102.5 | 225 | 0 | 628 | 524 | 506 | 2.11 | 2.41 | 2.58 | 20 | 34.24 | |
58 | 307.5 | 102.5 | 225 | 0 | 628 | 210 | 814 | 2.11 | 3.22 | 2.56 | 20 | 31.12 | |
59 | 307.5 | 102.5 | 225 | 0 | 628 | 0 | 1017 | 2.11 | 3.77 | 2.54 | 20 | 29.36 | |
60 | 410 | 0 | 225 | 0 | 642 | 0 | 1017 | 2.11 | 3.77 | 2.53 | 20 | 30.48 | [51] |
61 | 307.5 | 102.5 | 225 | 0 | 611 | 1048 | 0 | 2.11 | 1.11 | 2.62 | 20 | 34.88 | |
62 | 307.5 | 102.5 | 225 | 0 | 611 | 840 | 204 | 2.11 | 1.64 | 2.6 | 20 | 34.24 | |
63 | 307.5 | 102.5 | 225 | 0 | 611 | 524 | 506 | 2.11 | 2.44 | 2.58 | 20 | 33.36 | |
64 | 307.5 | 102.5 | 225 | 0 | 611 | 0 | 1017 | 2.11 | 3.77 | 2.53 | 20 | 29.44 | |
65 | 266.5 | 143.5 | 225 | 0 | 598 | 1048 | 0 | 2.11 | 1.11 | 2.62 | 20 | 32.56 | |
66 | 267.5 | 143.6 | 225 | 0 | 598 | 840 | 204 | 2.11 | 1.64 | 2.6 | 20 | 32.8 | |
67 | 268.5 | 143.7 | 225 | 0 | 598 | 524 | 506 | 2.11 | 2.44 | 2.58 | 20 | 29.68 | |
68 | 269.5 | 143.8 | 225 | 0 | 598 | 0 | 1017 | 2.11 | 3.77 | 2.53 | 20 | 20.16 | |
69 | 400 | 0 | 180 | 0 | 708 | 1108 | 0 | 2.11 | 1.11 | 2.62 | 20 | 53.44 | |
70 | 400 | 0 | 180 | 0 | 708 | 886 | 215 | 2.11 | 1.64 | 2.6 | 20 | 49.92 | |
71 | 400 | 0 | 180 | 0 | 708 | 554 | 538 | 2.11 | 2.44 | 2.58 | 20 | 45.44 | |
72 | 400 | 0 | 180 | 0 | 708 | 0 | 1075 | 2.11 | 3.77 | 2.53 | 20 | 41.68 | |
73 | 300 | 100 | 180 | 0 | 688 | 1108 | 0 | 2.11 | 1.11 | 2.62 | 20 | 43.52 | |
74 | 300 | 100 | 180 | 0 | 688 | 886 | 215 | 2.11 | 1.64 | 2.6 | 20 | 39.76 | |
75 | 300 | 100 | 180 | 0 | 688 | 554 | 538 | 2.11 | 2.44 | 2.58 | 20 | 35.44 | |
76 | 300 | 100 | 180 | 0 | 688 | 0 | 1075 | 2.11 | 3.77 | 2.53 | 20 | 31.6 | |
77 | 260 | 140 | 180 | 0 | 688 | 1108 | 0 | 2.11 | 1.11 | 2.62 | 20 | 36.72 | |
78 | 260 | 140 | 180 | 0 | 688 | 886 | 215 | 2.11 | 1.64 | 2.6 | 20 | 34.88 | |
79 | 260 | 140 | 180 | 0 | 688 | 554 | 538 | 2.11 | 2.44 | 2.58 | 20 | 32.32 | |
80 | 260 | 140 | 180 | 0 | 688 | 0 | 1075 | 2.11 | 3.77 | 2.53 | 20 | 30.64 | |
81 | 390 | 0 | 195 | 0 | 678 | 1107 | 0 | 2.11 | 1.12 | 2.62 | 20 | 46 | [11] |
82 | 390 | 0 | 195 | 0 | 678 | 527 | 539 | 2.11 | 2.56 | 2.57 | 20 | 42.24 | |
83 | 390 | 0 | 195 | 0 | 678 | 0 | 1078 | 2.11 | 4.01 | 2.52 | 20 | 39.2 | |
84 | 253.5 | 136.5 | 195 | 0 | 640 | 1107 | 0 | 2.11 | 1.12 | 2.62 | 20 | 34 | |
85 | 253.5 | 136.5 | 195 | 0 | 640 | 527 | 539 | 2.11 | 2.56 | 2.57 | 20 | 34.8 | |
86 | 253.5 | 136.5 | 195 | 0 | 640 | 0 | 1078 | 2.11 | 4.01 | 2.52 | 20 | 29.6 | |
87 | 380 | 0 | 190 | 0 | 687 | 1120 | 0 | 2.11 | 0.74 | 2.64 | 20 | 44.8 | |
88 | 380 | 0 | 190 | 0 | 687 | 0 | 1025 | 2.11 | 6.74 | 2.4 | 20 | 39.84 | |
89 | 380 | 0 | 190 | 0 | 687 | 0 | 1039 | 2.11 | 3.03 | 2.44 | 20 | 40.32 | |
90 | 380 | 0 | 190 | 0 | 687 | 0 | 1043 | 2.11 | 1.87 | 2.44 | 20 | 42.08 | |
91 | 355 | 0 | 195 | 0 | 690 | 1127 | 0 | 2.11 | 1.11 | 2.62 | 20 | 35.04 | [52] |
92 | 355 | 0 | 195 | 0 | 690 | 902 | 205 | 2.11 | 1.6 | 2.6 | 20 | 33.52 | |
93 | 355 | 0 | 195 | 0 | 690 | 564 | 543 | 2.11 | 2.41 | 2.57 | 20 | 30.56 | |
94 | 355 | 0 | 195 | 0 | 690 | 0 | 1085 | 2.11 | 3.76 | 2.52 | 20 | 29.2 | |
95 | 355 | 0 | 195 | 0 | 690 | 902 | 193 | 2.11 | 1.97 | 2.58 | 20 | 32.96 | |
96 | 355 | 0 | 195 | 0 | 690 | 564 | 520 | 2.11 | 3.44 | 2.52 | 20 | 29.12 | |
97 | 355 | 0 | 195 | 0 | 690 | 0 | 1038 | 2.11 | 5.96 | 2.42 | 20 | 27.44 | |
98 | 355 | 0 | 195 | 0 | 690 | 902 | 199 | 2.11 | 2.04 | 2.6 | 20 | 33.28 | |
99 | 355 | 0 | 195 | 0 | 690 | 564 | 534 | 2.11 | 3.6 | 2.55 | 20 | 30.24 | |
100 | 355 | 0 | 195 | 0 | 690 | 0 | 1068 | 2.11 | 6.23 | 2.48 | 20 | 28.48 | |
101 | 353 | 0 | 209 | 0 | 666 | 1093 | 0 | 2.11 | 1.24 | 2.62 | 20 | 36.8 | [8] |
102 | 353 | 0 | 206 | 0 | 661 | 864 | 216 | 2.11 | 2.34 | 2.57 | 20 | 34.4 | |
103 | 353 | 0 | 207 | 0 | 649 | 531 | 531 | 2.11 | 3.98 | 2.49 | 20 | 30.48 | |
104 | 353 | 0 | 209 | 0 | 625 | 0 | 1026 | 2.11 | 6.71 | 2.36 | 20 | 31.28 | |
105 | 353 | 0 | 214 | 0 | 667 | 1086 | 0 | 2.11 | 1.24 | 2.62 | 20 | 38.64 | [8] |
106 | 353 | 0 | 221 | 0 | 667 | 1080 | 0 | 2.11 | 1.24 | 2.62 | 20 | 32.16 | |
107 | 353 | 0 | 217 | 0 | 660 | 861 | 209 | 2.11 | 2.31 | 2.57 | 20 | 35.92 | |
108 | 353 | 0 | 230 | 0 | 661 | 853 | 202 | 2.11 | 2.29 | 2.57 | 20 | 34.56 | |
109 | 353 | 0 | 229 | 0 | 647 | 527 | 513 | 2.11 | 3.94 | 2.49 | 20 | 35.76 | |
110 | 353 | 0 | 247 | 0 | 647 | 524 | 496 | 2.11 | 3.9 | 2.49 | 20 | 31.76 | |
111 | 353 | 0 | 241 | 0 | 625 | 0 | 993 | 2.11 | 6.71 | 2.36 | 20 | 37.44 | |
112 | 353 | 0 | 271 | 0 | 625 | 0 | 959 | 2.11 | 6.7 | 2.36 | 20 | 34.64 | |
113 | 379 | 0 | 190 | 0 | 623 | 1237 | 0 | 2.1 | 1.24 | 2.62 | 20 | 33.2 | [7] |
114 | 379 | 0 | 190 | 0 | 590 | 0 | 1171 | 2.1 | 8.2 | 2.41 | 20 | 26.08 | |
115 | 379 | 0 | 190 | 0 | 590 | 0 | 1171 | 2.1 | 6.61 | 2.39 | 20 | 30.96 | |
116 | 420 | 105 | 184 | 0.7 | 668 | 1002 | 0 | 2.11 | 1.1 | 2.62 | 20 | 56 | [53] |
117 | 420 | 105 | 184 | 0.7 | 668 | 0 | 916 | 2.11 | 6.49 | 2.4 | 20 | 39.68 | |
118 | 420 | 105 | 184 | 0.7 | 668 | 0 | 938 | 2.11 | 5.55 | 2.45 | 20 | 43.44 | |
119 | 420 | 105 | 184 | 0.7 | 668 | 0 | 922 | 2.11 | 5.81 | 2.41 | 20 | 50.72 | |
120 | 420 | 105 | 184 | 0.7 | 668 | 0 | 940 | 2.11 | 5.53 | 2.46 | 20 | 56 | |
121 | 420 | 105 | 184 | 0.7 | 668 | 0 | 923 | 2.11 | 6.59 | 2.41 | 20 | 58.16 | |
122 | 300 | 0 | 205 | 0 | 697 | 1143 | 0 | 2.19 | 1.01 | 2.6 | 20 | 27.6 | [54] |
123 | 300 | 0 | 205 | 0 | 697 | 0 | 1075 | 2.19 | 3.36 | 2.48 | 20 | 28 | |
124 | 300 | 0 | 205 | 0 | 697 | 0 | 1027 | 2.19 | 6.14 | 2.36 | 20 | 23.36 | |
125 | 300 | 0 | 205 | 0 | 697 | 0 | 1040 | 2.19 | 6.44 | 2.36 | 20 | 22.16 | |
126 | 350 | 0 | 180 | 0 | 706 | 1158 | 0 | 2.19 | 1.01 | 2.6 | 20 | 38.64 | |
127 | 350 | 0 | 180 | 0 | 706 | 0 | 1089 | 2.19 | 3.36 | 2.48 | 20 | 38.08 | |
128 | 350 | 0 | 180 | 0 | 706 | 0 | 1041 | 2.19 | 6.14 | 2.36 | 20 | 33.6 | |
129 | 350 | 0 | 180 | 0 | 706 | 0 | 1054 | 2.19 | 6.44 | 2.36 | 20 | 34.32 | |
130 | 425 | 0 | 185 | 0 | 696 | 1092 | 0 | 2.19 | 1.01 | 2.6 | 20 | 49.28 | |
131 | 425 | 0 | 185 | 0 | 696 | 0 | 1028 | 2.19 | 3.36 | 2.48 | 20 | 48 | |
132 | 425 | 0 | 185 | 0 | 696 | 0 | 982 | 2.19 | 6.14 | 2.36 | 20 | 42.96 | |
133 | 425 | 0 | 185 | 0 | 696 | 0 | 994 | 2.19 | 6.44 | 2.36 | 20 | 42.56 | |
134 | 485 | 0 | 165 | 0 | 685 | 1094 | 0 | 2.19 | 1.01 | 2.6 | 20 | 64.4 | |
135 | 485 | 0 | 165 | 0 | 685 | 0 | 1030 | 2.19 | 3.36 | 2.48 | 20 | 62.56 | |
136 | 485 | 0 | 165 | 0 | 685 | 0 | 979 | 2.19 | 6.14 | 2.36 | 20 | 56.96 | |
137 | 485 | 0 | 165 | 0 | 685 | 0 | 982 | 2.19 | 6.44 | 2.36 | 20 | 52.32 | |
138 | 350 | 0 | 180 | 0 | 675 | 0 | 1089 | 2.19 | 6.14 | 2.36 | 20 | 39.36 | |
139 | 350 | 0 | 180 | 0 | 654 | 0 | 1041 | 2.19 | 6.44 | 2.36 | 20 | 34.88 | |
140 | 425 | 0 | 185 | 0 | 637 | 0 | 1028 | 2.19 | 6.14 | 2.36 | 20 | 48.32 | |
141 | 425 | 0 | 185 | 0 | 618 | 0 | 982 | 2.19 | 6.44 | 2.36 | 20 | 45.84 | |
142 | 440 | 0 | 155 | 0 | 666 | 1166 | 0 | 2.19 | 0.71 | 2.66 | 20 | 55.68 | |
143 | 440 | 0 | 155 | 0 | 666 | 0 | 1070 | 2.19 | 6.38 | 2.41 | 20 | 47.52 | |
144 | 440 | 0 | 155 | 0 | 666 | 0 | 1077 | 2.19 | 5.18 | 2.42 | 20 | 55.84 | |
145 | 440 | 0 | 155 | 0 | 666 | 0 | 1083 | 2.19 | 5.36 | 2.44 | 20 | 54.24 | |
146 | 440 | 0 | 155 | 0 | 666 | 0 | 1090 | 2.19 | 5.3 | 2.45 | 20 | 54.96 | |
147 | 440 | 0 | 155 | 0 | 666 | 0 | 1094 | 2.19 | 5.36 | 2.46 | 20 | 49.68 | |
148 | 380 | 0 | 190 | 0 | 710 | 1110 | 0 | 2.19 | 0.71 | 2.66 | 20 | 43.52 | |
149 | 380 | 0 | 190 | 0 | 710 | 1055 | 44 | 2.19 | 1.27 | 2.63 | 20 | 43.52 | |
150 | 380 | 0 | 190 | 0 | 710 | 999 | 88 | 2.19 | 1.85 | 2.61 | 20 | 43.92 | |
151 | 380 | 0 | 190 | 0 | 710 | 944 | 132 | 2.19 | 2.44 | 2.58 | 20 | 42 | |
152 | 380 | 0 | 190 | 0 | 710 | 1055 | 43 | 2.19 | 1.53 | 2.63 | 20 | 43.36 | |
153 | 380 | 0 | 190 | 0 | 710 | 999 | 86 | 2.19 | 2.38 | 2.61 | 20 | 41.84 | |
154 | 380 | 0 | 190 | 0 | 710 | 944 | 129 | 2.19 | 3.24 | 2.61 | 20 | 37.52 | |
155 | 370 | 0 | 185 | 0 | 732 | 1090 | 0 | 2.19 | 1.01 | 2.6 | 20 | 38.56 | |
156 | 370 | 0 | 185 | 0 | 732 | 545 | 463 | 2.19 | 2.31 | 2.55 | 20 | 40.24 | |
157 | 370 | 0 | 185 | 0 | 732 | 0 | 924 | 2.19 | 3.85 | 2.49 | 20 | 39.36 | |
158 | 425 | 0 | 192 | 0.19 | 730 | 963 | 0 | 2.58 | 1.4 | 2.61 | 25 | 35.52 | [55] |
159 | 428 | 0 | 193 | 0.18 | 734 | 969 | 0 | 2.58 | 1.4 | 2.61 | 25 | 34.24 | |
160 | 429 | 0 | 193 | 0.22 | 736 | 729 | 230 | 2.58 | 2.24 | 2.58 | 25 | 30.16 | |
161 | 423 | 0 | 190 | 0.18 | 726 | 479 | 453 | 2.58 | 3.1 | 2.54 | 25 | 31.44 | |
162 | 427 | 0 | 192 | 0.28 | 733 | 242 | 687 | 2.58 | 3.99 | 2.51 | 25 | 28.24 | |
163 | 426 | 0 | 192 | 0.35 | 731 | 0 | 913 | 2.58 | 4.9 | 2.47 | 25 | 30.08 | |
164 | 431 | 0 | 195 | 0.1 | 741 | 489 | 457 | 2.58 | 3.33 | 2.53 | 25 | 28.08 | |
165 | 433 | 0 | 195 | 0.27 | 744 | 0 | 918 | 2.58 | 5.4 | 2.44 | 25 | 29.04 | |
166 | 427 | 0 | 192 | 0.19 | 734 | 484 | 451 | 2.58 | 3.28 | 2.52 | 25 | 26.88 | |
167 | 432 | 0 | 194 | 0.23 | 742 | 0 | 912 | 2.58 | 5.3 | 2.43 | 25 | 27.52 | |
168 | 430 | 0 | 193 | 0.2 | 737 | 0 | 917 | 2.58 | 4.7 | 2.46 | 25 | 25.28 | |
169 | 429 | 0 | 193 | 0.22 | 737 | 0 | 909 | 2.58 | 5.1 | 2.44 | 25 | 27.28 | |
170 | 316 | 0 | 194 | 0.11 | 803 | 953 | 0 | 2.58 | 1.4 | 2.61 | 25 | 23.44 | |
171 | 320 | 0 | 192 | 0.13 | 819 | 0 | 914 | 2.58 | 4.9 | 2.47 | 25 | 21.68 | |
172 | 322 | 0 | 193 | 0.09 | 823 | 0 | 908 | 2.58 | 5.4 | 2.44 | 25 | 19.92 | |
173 | 320 | 0 | 192 | 0.1 | 819 | 0 | 899 | 2.58 | 5.3 | 2.43 | 25 | 16.4 | |
174 | 645 | 0 | 194 | 0.36 | 563 | 973 | 0 | 2.58 | 1.4 | 2.61 | 25 | 46.8 | |
175 | 645 | 0 | 193 | 0.46 | 563 | 0 | 921 | 2.58 | 4.9 | 2.47 | 25 | 36.4 | |
176 | 642 | 0 | 192 | 0.51 | 561 | 0 | 905 | 2.58 | 5.4 | 2.44 | 25 | 45.68 | |
177 | 642 | 0 | 192 | 0.44 | 561 | 0 | 902 | 2.58 | 5.3 | 2.43 | 25 | 37.68 |
References
- Gursel, A.P.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Higuchi, T.; Morioka, M.; Yoshioka, I.; Yokozeki, K. Development of a new ecological concrete with CO2 emissions below zero. Constr. Build. Mater. 2014, 67, 338–343. [Google Scholar] [CrossRef]
- Lippiatt, N.; Ling, T.-C.; Pan, S.-Y. Towards carbon-neutral construction materials: Carbonation of cement-based materials and the future perspective. J. Build. Eng. 2020, 28, 101062. [Google Scholar] [CrossRef]
- Tam, V.W.; Soomro, M.; Evangelista, A.C.J. Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted. Constr. Build. Mater. 2021, 288, 123066. [Google Scholar] [CrossRef]
- Silva, R.; Jiménez, J.; Agrela, F.; De Brito, J. Real-scale applications of recycled aggregate concrete. In New Trends in Eco-efficient and Recycled Concrete; Woodhead Publishing: Sawston, UK, 2019; pp. 573–589. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Kalinowska-Wichrowska, K.; Fernández, J.M.; Jiménez, J.R. Accelerated carbonation of fresh cement-based products containing recycled masonry aggregates for CO2 sequestration. J. CO2 Util. 2021, 46, 101461. [Google Scholar] [CrossRef]
- Poon, C.; Shui, Z.; Lam, L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 2004, 18, 461–468. [Google Scholar] [CrossRef]
- Poon, C.; Shui, Z.; Lam, L.; Fok, H.; Kou, S. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 2004, 34, 31–36. [Google Scholar] [CrossRef]
- de Juan, M.S.; Gutiérrez, P.A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 872–877. [Google Scholar] [CrossRef]
- Matar, P.; Barhoun, J. Effects of waterproofing admixture on the compressive strength and permeability of recycled aggregate concrete. J. Build. Eng. 2020, 32, 101521. [Google Scholar] [CrossRef]
- Kou, S.-C.; Poon, C.S.; Agrela, F. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem. Concr. Compos. 2011, 33, 788–795. [Google Scholar] [CrossRef]
- Agrela, F.; Alaejos, P.; Thomas, C.; Rueda, J.; Silva, R.; Moreno-Juez, J.; Sanjuán, M.; de Brito, J.; de Rojas, M.S. Normative review and necessary advances to promote the use of recycled aggregates and by-products in cement-based materials. In Waste and Byproducts in Cement-Based Materials; Woodhead Publishing: Sawston, UK, 2021; pp. 735–776. [Google Scholar] [CrossRef]
- Singh, B.P.; Yazdani, N.; Ramirez, G. Effect of a Time Dependent Concrete Modulus of Elasticity on Prestress Losses in Bridge Girders. Int. J. Concr. Struct. Mater. 2013, 7, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Bonopera, M.; Chang, K.C. Elastic modulus of prestressed and reinforced concrete beams in Taiwan under dynamic flexural loading. J. Chin. Inst. Civ. Hydraul. Eng. 2021, 33, 83–92. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Thomas, J.; Thaickavil, N.N.; Wilson, P. Strength and durability of concrete containing recycled concrete aggregates. J. Build. Eng. 2018, 19, 349–365. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Hubler, M.H.; Wendner, R. RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: Material model and structural analysis. Mater. Struct. 2015, 48, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Rashid, K.; Rehman, M.U.; de Brito, J.; Ghafoor, H. Multi-criteria optimization of recycled aggregate concrete mixes. J. Clean. Prod. 2020, 276, 124316. [Google Scholar] [CrossRef]
- Ajdukiewicz, A.; Kliszczewicz, A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Compos. 2002, 24, 269–279. [Google Scholar] [CrossRef]
- Silva, R.; de Brito, J.; Dhir, R. The influence of the use of recycled aggregates on the compressive strength of concrete: A review. Eur. J. Environ. Civ. Eng. 2015, 19, 825–849. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Concrete with fine recycled aggregates: A review. Eur. J. Environ. Civ. Eng. 2014, 18, 129–172. [Google Scholar] [CrossRef]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar] [CrossRef]
- Lin, C.-J.; Wu, N.-J. An ANN Model for Predicting the Compressive Strength of Concrete. Appl. Sci. 2021, 11, 3798. [Google Scholar] [CrossRef]
- Duan, Z.; Kou, S.; Poon, C. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Constr. Build. Mater. 2013, 40, 1200–1206. [Google Scholar] [CrossRef]
- Patil, S.V.; Rao, K.B.; Nayak, G. Prediction of recycled coarse aggregate concrete mechanical properties using multiple linear regression and artificial neural network. J. Eng. Des. Technol. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Özcan, F.; Atis, C.; Karahan, O.; Uncuoğlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effects of TiO2 nanoparticles on physical, thermal and mechanical properties of concrete using ground granulated blast furnace slag as binder. Mater. Sci. Eng. A 2011, 528, 2085–2092. [Google Scholar] [CrossRef]
- Nazari, A. Compressive strength of geopolymers produced by ordinary Portland cement: Application of genetic programming for design. Mater. Des. 2013, 43, 356–366. [Google Scholar] [CrossRef]
- Castelli, M.; Vanneschi, L.; Silva, S. Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators. Expert Syst. Appl. 2013, 40, 6856–6862. [Google Scholar] [CrossRef]
- González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F.; Pérez-Ordóñez, J.L. Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming. Constr. Build. Mater. 2016, 106, 480–499. [Google Scholar] [CrossRef]
- Gholampour, A.; Gandomi, A.; Ozbakkaloglu, T. New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr. Build. Mater. 2017, 130, 122–145. [Google Scholar] [CrossRef]
- Moradi, M.; Khaleghi, M.; Salimi, J.; Farhangi, V.; Ramezanianpour, A. Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement 2021, 183, 109790. [Google Scholar] [CrossRef]
- Kostić, S.; Vasović, D. Prediction model for compressive strength of basic concrete mixture using artificial neural networks. Neural Comput. Appl. 2015, 26, 1005–1024. [Google Scholar] [CrossRef]
- Sarıdemir, M. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Adv. Eng. Softw. 2009, 40, 920–927. [Google Scholar] [CrossRef]
- Gandomi, A.; Alavi, A.H.; Kazemi, S.; Gandomi, M. Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement. Autom. Constr. 2014, 42, 112–121. [Google Scholar] [CrossRef]
- Sarıdemir, M. Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design. Mater. Des. 2014, 56, 297–304. [Google Scholar] [CrossRef]
- Chopra, P.; Kumar Sharma, R.; Kumar, M. Prediction of compressive strength of concrete using Artificial Neural Network and Genetic Programming. Lect. Notes Civ. Eng. 2016, 25, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Gandomi, A.H.; Alavi, A.H.; Gandomi, M.; Kazemi, S. Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement. Measurement 2017, 95, 367–376. [Google Scholar] [CrossRef]
- Congro, M.; Monteiro, V.M.D.A.; Brandão, A.L.; dos Santos, B.F.; Roehl, D.; Silva, F.D.A. Prediction of the residual flexural strength of fiber reinforced concrete using artificial neural networks. Constr. Build. Mater. 2021, 303, 124502. [Google Scholar] [CrossRef]
- Rafiq, M.; Bugmann, G.; Easterbrook, D. Neural network design for engineering applications. Comput. Struct. 2001, 79, 1541–1552. [Google Scholar] [CrossRef]
- Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. Methods Mol. Biol. 2008, 458, 23–42. [Google Scholar] [CrossRef]
- Lima, C.; Caggiano, A.; Faella, C.; Martinelli, E.; Pepe, M.; Realfonzo, R. Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Constr. Build. Mater. 2013, 47, 547–559. [Google Scholar] [CrossRef]
- Cartuxo, F.; de Brito, J.; Evangelista, L.; Jiménez, J.R.; Ledesma, E.F. Rheological behaviour of concrete made with fine recycled concrete aggregates—Influence of the superplasticizer. Constr. Build. Mater. 2015, 89, 36–47. [Google Scholar] [CrossRef]
- Poon, C.S.; Kou, S.C.; Lam, L. Pore Size Distribution of High Performance Metakaolin Concrete. J. Wuhan Univ. Technol. 2002, 17, 42–46. [Google Scholar] [CrossRef]
- Poon, C.; Lam, L.; Wong, Y. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000, 30, 447–455. [Google Scholar] [CrossRef]
- Poon, C.S.; Azhar, S. Deterioration and Recovery of Metakaolin Blended Concrete Subjected to High Temperature. Fire Technol. 2003, 39, 35–45. [Google Scholar] [CrossRef]
- Poon, C.S.; Azhar, S.; Anson, M.; Wong, Y.-L. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem. Concr. Res. 2001, 31, 1291–1300. [Google Scholar] [CrossRef]
- Poon, C.; Ho, D. A feasibility study on the utilization of r-FA in SCC. Cem. Concr. Res. 2004, 34, 2337–2339. [Google Scholar] [CrossRef]
- Lam, L.; Wong, Y.L.; Poon, C.A. Effect of Fly Ash and Silica Fume on Compressive and Fracture Behaviors of Concrete. Cem. Concr. Res. 1998, 28, 271–283. [Google Scholar] [CrossRef]
- Poon, C.S.; Kou, S.C.; Lam, L. Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struct. 2007, 40, 981–988. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S.; Chan, D. Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete. J. Mater. Civ. Eng. 2007, 19, 709–717. [Google Scholar] [CrossRef]
- Kou, S.-C.; Poon, C.S. Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Mag. Concr. Res. 2008, 60, 57–64. [Google Scholar] [CrossRef]
- Kou, S.; Poon, C. Effect of quality of parent concrete on the mechanical properties of high performance recy-cled aggregate concrete. Kuei Suan Jen Hsueh Pao/J. Chin. Ceram. Soc. 2012, 40, 7–11. [Google Scholar]
- Duan, S.; Liao, H.; Ma, Z.; Cheng, F.; Fang, L.; Gao, H.; Yang, H. The relevance of ultrafine fly ash properties and mechanical properties in its fly ash-cement gelation blocks via static pressure forming. Constr. Build. Mater. 2018, 186, 1064–1071. [Google Scholar] [CrossRef]
- Schoppe, B.M. Shrinkage & Modulus of Elasticity in Concrete with Recycled Aggregates. Master’s Thesis, Faculty of California Polytechnic State University, San Luis, CA, USA, 2016. [Google Scholar] [CrossRef]
Authors | Year | Ref. | Technique | Input Parameters | Output Data | Number of Samples |
---|---|---|---|---|---|---|
Saridemir, M. | 2009 | [34] | ANN, Fuzzy Logic | Age, days Metakaolin, % Water–binder ratio, % Superplasticizer, % Binder–sand ratio, % | Compressive strength | 179 |
Özcan, F. et al. | 2009 | [26] | ANN, Fuzzy Logic | Cement, kg/m3 Silica fume, kg/m3 Water, L/m3 Plasticizer, L/m3 Aggregate, kg/m3) Age, days | Compressive strength | 48 |
Nazari, A. et al. | 2011 | [27] | ANN, Genetic Programming | Cement, kg/m3 Nano TiO2, kg/m3 Aggregate type Water, kg/m3 Superplasticizer, kg/m3 Curing medium Age of curing Number of tests | Split tensile strength and percentage of water absorption | 144 |
Nazari, A. | 2013 | [28] | Genetic Programming | NaOH concentration Water glass–NaOH ratio Alkali activator–cement ratio Oven curing temperature Oven curing time Water curing regime | Compressive strength | 32 |
Castelli, M. et al. | 2013 | [29] | Genetic Programming | Cement, kg/m3 Fly ash, kg/m3 Blast furnace slag, kg/m3 Water, kg/m3 Superplasticizer, kg/m3 Coarse aggregate, kg/m3 Fine aggregate, kg/m3 Age of testing, days | Compressive strength | 1028 |
Duan Z et al. | 2013 | [24] | ANN | Water, kg/m3 Cement, kg/m3 Sand, kg/m3 Natural aggregate, kg/m3 Recycled aggregate, kg/m3 Fineness modulus of sand Maximum size of coarse aggregate, mm Water–cement ratio Type of coarse aggregate Water absorption of coarse aggregate, % Saturated surface dry Specific gravity of coarse aggregate, g/cm3 Replacement ratio by volume, % Conversion coefficient | Compressive strength | 168 |
Gandomi, A. et al. | 2014 | [35] | Gene Expression Programming | Web width, mm Effective depth, mm Shear-span-to-depth ratio Concrete compressive strength, MPa Amount of longitudinal reinforcement, % | Shear strength | 1942 |
Saridemir, M. | 2014 | [36] | Genetic Programming | Age of specimen Cement Sand Aggregate Superplasticizer Fly ash | Compressive strength | 1976 |
Kostić, S. et al. | 2015 | [33] | ANN | Water–cement ratio Age Number of freeze/thaws | Compressive strength | 75 |
González-Taboada, I. et al. | 2016 | [30] | Multivariable Regression and Genetic Programming | Recycled concrete compressive strength Recycled coarse aggregate percentage Recycled coarse aggregate water absorption | Compressive strength, Modulus of elasticity and Splitting tensile strength | 1831 |
Chopra, P. et al. | 2016 | [37] | ANN and Genetic Programming | Water Cement Coarse aggregate Fine aggregate 28-day compressive strength | 56-day compressive strength | 76 |
Gandomi, A. et al. | 2017 | [38] | Gene Expression Programming | Web width, mm Effective depth, mm Shear-span-to-depth ratio Concrete compressive strength, MPa Amount of longitudinal reinforcement, % Amount of shear reinforcement, MPa | Shear strength | 466 |
Gholampour, A. et al. | 2017 | [31] | Gene Expression Programming | Recycled concrete aggregate replacement ratio, % Effective water-to-cement binder ratio | Compressive strength, Elastic modulus, Flexural strength, and Splitting tensile strength | 650, 421, 346, 152 |
Patil et al. | 2021 | [25] | ANN Multiple linear regression | Cement, kg/m3 Natural fine aggregate, kg/m3 Recycled coarse aggregate, kg/m3 Water, kg/m3 Water–cement ratio Water absorption, % Specific gravity Aggregate impact value, % Aggregate abrasion value, % | Compressive strength Flexural strength Split tensile strength | 185 |
Congro, M. et al. | 2021 | [39] | ANN | Fiber aspect ratio Matrix compressive strength Steel fiber volumetric fraction | Flexural strength | 400 |
Lin, C.J. et al. | 2021 | [23] | ANN | Water, kg/m3 Fine aggregate, kg/m3 Coarse aggregate, kg/m3 Blast Furnace Slag, kg/m3 Fly ash, kg/m3 Superplasticizer, kg/m3 | Compressive strength | 482 |
Moradi, M.J. et al. | 2021 | [32] | ANN | Cement, kg/m3 Metakaolin, kg/m3 Water, kg/m3 Coarse aggregate, kg/m3 Fine aggregate, kg/m3 Specific area of MK, m2/kg SiO2 content of MK, % Al2O3 content of MK, % | Compressive strength | 239 |
C kg/m3 | FA kg/m3 | W kg/m3 | SP % | FNA kg/m3 | CAN kg/m3 | RCA kg/m3 | FM of FNA | WA % | SSD g/cm3 | TM mm | |
---|---|---|---|---|---|---|---|---|---|---|---|
Range | 180…702 | 60…305 | 130…271 | 0.09…5.07 | 536…870 | 210…1237 | 43…1171 | 2.1…2.64 | 0.71…8.2 | 2.36…2.66 | 10…25 |
n | 177 | 67 | 177 | 60 | 177 | 118 | 101 | 177 | 177 | 177 | 177 |
Mean | 369.33 | 137.98 | 187.78 | 1.20 | 670.73 | 936.86 | 742.27 | 2.20 | 2.80 | 2.55 | 19.51 |
Std. Dev. | 87.40 | 75.59 | 24.77 | 0.91 | 55.73 | 485.51 | 452.45 | 0.15 | 1.98 | 0.09 | 6.52 |
Training Algorithm—Hidden Layers | MAE | Std. Dev. | MAPE | RMSE | R Training | R All |
---|---|---|---|---|---|---|
LM-15 | 1.79 | 3.26 | 4.46 | 3.27 | 0.99618 | 0.97133 |
LM-20 | 2.20 | 4.45 | 6.11 | 4.50 | 0.99734 | 0.95145 |
BR-15 | 1.87 | 2.65 | 4.95 | 2.64 | 0.98895 | 0.98124 |
BR-20 | 1.58 | 2.35 | 4.12 | 2.34 | 0.98999 | 0.98526 |
Method | MAE | RMSE | R All |
---|---|---|---|
GPR | 2.793 | 3.5018 | 0.9487 |
SVM | 2.8591 | 3.5099 | 0.9487 |
LR | 3.1391 | 3.6435 | 0.9434 |
Method | MAE | Std. Dev. | MAPE | RMSE | R Training | R All |
---|---|---|---|---|---|---|
i | 4.45 | 5.52 | 11.52 | 5.92 | 0.94589 | 0.91605 |
ii | 2.04 | 2.75 | 5.32 | 2.74 | 0.98228 | 0.97994 |
iii | 2.17 | 3.14 | 6.01 | 3.13 | 0.98347 | 0.97350 |
iv | 1.72 | 2.38 | 4.62 | 2.37 | 0.98756 | 0.98486 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suescum-Morales, D.; Salas-Morera, L.; Jiménez, J.R.; García-Hernández, L. A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete. Appl. Sci. 2021, 11, 11077. https://doi.org/10.3390/app112211077
Suescum-Morales D, Salas-Morera L, Jiménez JR, García-Hernández L. A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete. Applied Sciences. 2021; 11(22):11077. https://doi.org/10.3390/app112211077
Chicago/Turabian StyleSuescum-Morales, David, Lorenzo Salas-Morera, José Ramón Jiménez, and Laura García-Hernández. 2021. "A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete" Applied Sciences 11, no. 22: 11077. https://doi.org/10.3390/app112211077
APA StyleSuescum-Morales, D., Salas-Morera, L., Jiménez, J. R., & García-Hernández, L. (2021). A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete. Applied Sciences, 11(22), 11077. https://doi.org/10.3390/app112211077