Advanced Omics and Radiobiological Tissue Archives: The Future in the Past
Abstract
:1. Introduction
2. Radiation Biology Archives
2.1. FFPE Blocks from Animal Experiments
Place | Name of Archive | Species | Tissue | Exposure * | Source of Information | DOI | Reference |
---|---|---|---|---|---|---|---|
BfS a | n.a. | Rats | Various | Internal (Thorotrast) | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1017 | [18] |
SUBI b | n.a. | Wistar rats, CBA mice | Various | Tritium; tritium and external gamma; Pu | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1041 http://dx.doi.org/doi:10.20348/STOREDB/1056 | |
ASN c | n.a. | Rats | Lung | Inhalation Pu; Np | storedb.org ERA; study ID 23.1 | http://dx.doi.org/doi:10.20348/STOREDB/1005 | [25] |
ASN | n.a. | Rats | Bone | Pu citrate i.v. | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1007 | [26] |
ASN | n.a. | Rats | Various | Wound contamination with actinides | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1022 | [27] |
QST-NIRS d | J-Share | Mice; rats | Various | Various | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1138 | [19] |
IES e | n.a. | Mice; rats | Various | External gamma | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1139 | [20] |
Tohoku University f | n.a. | Cattle wild Japanese macaques | Various | Gamma (external and internal) | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1141 | [22,23,24] |
Northwestern University g | NURA | Mice; Beagle Dogs | Various | External neutron; and gamma | storedb.org http://janus.northwestern.edu/wololab/index.php?go=archives | http://dx.doi.org/doi:10.20348/STOREDB/1094 | [7,16,17] |
Place | Name of Archive | Tissue | Exposure | Source of Information | DOI | Reference |
---|---|---|---|---|---|---|
BfS, Germany | Wismut Uranium Miners Biobank | Lung | Radon, Radon progeny, longlived Radionuclides, external gamma | storedb.org | http://dx.doi.org/doi:10.20348/STOREDB/1034 | [28,29] |
UA, RUS | Chernobyl Tissue Bank | Thyroid | Chernobyl catastrophy | storedb.org www.chernobyltissuebank.com | http://dx.doi.org/doi:10.20348/STOREDB/1092 | [30] |
RERF, Japan a | Adult Health Study (AHS) | Various | Atomic bomb survivors | storedb.org https://www.rerf.or.jp/en/programs/research_activities_e/outline_e/progahs-en/ | http://dx.doi.org/doi:10.20348/STOREDB/1137 | [31] |
Washinton State University, USA | NHRTR/USTUR | Various | Internal; actinides | storedb.org https://ustur.wsu.edu/ | http://dx.doi.org/doi:10.20348/STOREDB/1140 | [32] |
Nagasaki University, Japan | The Nagasaki Atomic Bomb Survivors’ Tumor Tissue Bank of Atomic Bomb Disease Institute | Various cancer and surrounding tissue | Atomic bomb survivors | storedb.org https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html | http://dx.doi.org/doi:10.20348/STOREDB/1142 | [33] |
SUBI b | RHTR | Various | Actinides; external gamma | storedb.org http://www.rhtr.subi.su/?requests/new | http://dx.doi.org/doi:10.20348/STOREDB/1149 | [34] |
Nagasaki University, Japan | The Nagasaki Atomic Bomb Survivors’ Tumor Tissue Bank of Atomic Bomb Disease Institute | Various | Thorotrast | https://www.genken.nagasaki-u.ac.jp/pathology/en/tt-bank/index_e.html | [7,23,35,36] |
2.2. FFPE Material from Humans
2.3. Databases
3. Main Challenges with Omics Analysis of FFPE
4. Omics Analysis on FFPE Samples in Radiobiological Archives
4.1. Proteomics
4.2. Genomics and Transcriptomics
5. Lessons from Past for Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayer, M.; Angenendt, L.; Schliemann, C.; Hartmann, W.; König, S. Are formalin-fixed and paraffin-embedded tissues fit for proteomic analysis? J. Mass Spectrom. 2019, 55, e4347. [Google Scholar] [CrossRef]
- Zhu, Y.; Weiss, T.; Zhang, Q.; Sun, R.; Wang, B.; Yi, X.; Wu, Z.; Gao, H.; Cai, X.; Ruan, G.; et al. High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol. Oncol. 2019, 13, 2305–2328. [Google Scholar] [CrossRef] [PubMed]
- Frankel, A. Formalin fixation in the ‘-omics’ era: A primer for the surgeon-scientist. ANZ J. Surg. 2012, 82, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Donczo, B.; Guttman, A. Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. J. Pharm. Biomed. Anal. 2018, 155, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapio, S.; Atkinson, M. Molecular information obtained from radiobiological tissue archives: Achievements of the past and visions of the future. Radiat. Environ. Biophys. 2008, 47, 183–187. [Google Scholar] [CrossRef]
- Zander, A.; Paunesku, T.; Woloschak, G. Radiation databases and archives-examples and comparisons. Int. J. Radiat. Biol. 2019, 95, 1378–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, P.N.; Kulka, U.; Tapio, S.; Grosche, B. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int. J. Radiat. Biol. 2019, 95, 861–878. [Google Scholar] [CrossRef] [PubMed]
- Giusti, L.; Angeloni, C.; Lucacchini, A. Update on proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev. Proteom. 2019, 16, 513–520. [Google Scholar] [CrossRef]
- Azimzadeh, O.; Atkinson, M.J.; Tapio, S. Qualitative and Quantitative Proteomic Analysis of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue. Springer Protoc. Handb. 2015, 1295, 109–115. [Google Scholar] [CrossRef]
- Föll, M.C.; Fahrner, M.; Oria, V.O.; Kühs, M.; Biniossek, M.L.; Werner, M.; Bronsert, P.; Schilling, O. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clin. Proteom. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quesada-Calvo, F.; Bertrand, V.; Longuespée, R.; Delga, A.; Mazzucchelli, G.; Smargiasso, N.; Baiwir, D.; Delvenne, P.; Malaise, M.; De Pauw-Gillet, M.-C.; et al. Comparison of two FFPE preparation methods using label-free shotgun proteomics: Application to tissues of diverticulitis patients. J. Proteom. 2015, 112, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, O.; Scherthan, H.; Yentrapalli, R.; Barjaktarovic, Z.; Ueffing, M.; Conrad, M.; Neff, F.; Calzada-Wack, J.; Aubele, M.; Buske, C.; et al. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. J. Proteom. 2012, 75, 2384–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludyga, N.; Grünwald, B.; Azimzadeh, O.; Englert, S.; Höfler, H.; Tapio, S.; Aubele, M. Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch. 2012, 460, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, O.; Azizova, T.; Merl-Pham, J.; Blutke, A.; Moseeva, M.; Zubkova, O.; Anastasov, N.; Feuchtinger, A.; Hauck, S.M.; Atkinson, M.J.; et al. Chronic Occupational Exposure to Ionizing Radiation Induces Alterations in the Structure and Metabolism of the Heart: A Proteomic Analysis of Human Formalin-Fixed Paraffin-Embedded (FFPE) Cardiac Tissue. Int. J. Mol. Sci. 2020, 21, 6832. [Google Scholar] [CrossRef]
- Schofield, P.N.; Tapio, S.; Grosche, B. Archiving lessons from radiobiology. Nat. Cell Biol. 2010, 468, 634. [Google Scholar] [CrossRef]
- Haley, B.; Wang, Q.; Wanzer, B.; Vogt, S.; Finney, L.; Yang, P.L.; Paunesku, T.; Woloschak, G. Past and future work on radiobiology mega-studies: A case study at argonne national laboratory. Health Phys. 2011, 100, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Woloschak, G. Woloschak Lab Website (Northwestern.edu). 13 June 2021. Available online: https://janus.northwestern.edu/wololab/index.php?go=archives (accessed on 18 November 2021).
- Grosche, B.; Birschwilks, M.; Wesch, H.; Kaul, A.; Van Kaick, G. The German Thorotrast Cohort Study: A review and how to get access to the data. Radiat. Environ. Biophys. 2016, 55, 281–289. [Google Scholar] [CrossRef]
- Morioka, T.; Blyth, B.J.; Imaoka, T.; Nishimura, M.; Takeshita, H.; Shimomura, T.; Ohtake, J.; Ishida, A.; Schofield, P.; Grosche, B.; et al. Establishing the Japan-Store house of animal radiobiology experiments (J-SHARE), a large-scale necropsy and histopathology archive providing international access to important radiobiology data. Int. J. Radiat. Biol. 2019, 95, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, I.B.; Tanaka, S.; Kohda, A.; Takai, D.; Nakamura, S.; Ono, T.; Tanaka, K.; Komura, J.I. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: Overview of the studies at the Institute for Environmental Sciences. Int. J. Radiat. Biol. 2018, 94, 423–433. [Google Scholar] [CrossRef]
- Tanaka, I.B. Personal Communication to B. Grosche, B., Ed.; 2021. [Google Scholar]
- Takahashi, S.; Inoue, K.; Suzuki, M.; Urushihara, Y.; Kuwahara, Y.; Hayashi, G.; Shiga, S.; Fukumoto, M.; Kino, Y.; Sekine, T.; et al. A comprehensive dose evaluation project concerning animals affected by the Fukushima Daiichi Nuclear Power Plant accident: Its set-up and progress. J. Radiat. Res. 2015, 56, i36–i41. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, M. Radiation pathology: From thorotrast to the future beyond radioresistance. Pathol. Int. 2014, 64, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, M. (Ed.) Low-Dose Radiation Effects on Animals and Ecosystems (Long-Term Study on the Fukushima Nuclear Accident); Springer: Singapore, 2020; p. 264. [Google Scholar]
- Dudoignon, N.; Guillet, K.; Rateau, G.; Fritsch, P. Survival, lung clearance, dosimetry and gross pathology of rats exposed to either NpO 2 or PuO 2 aerosols. Int. J. Radiat. Biol. 2001, 77, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Roch-Lefevre, S.; Daino, K.; Altmeyer-Morel, S.; Guilly, M.-N.; Chevillard, S. Cytogenetic and Molecular Characterization of Plutonium-Induced Rat Osteosarcomas. J. Radiat. Res. 2010, 51, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, N.M.; Wilk, J.C.; Abram, M.C.; Renault, D.; Chau, Q.; Helfer, N.; Guichet, C.; Van der Meeren, A. Internal contamination by actinides after wounding: A robust rodent model for assessment of local and distant actinide retention. Health Phys. 2012, 103, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.; Deffner, V.; Schnelzer, M.; Fenske, N. Mortality in underground miners in a former uranium ore mine. Dtsch. Aerzteblatt Online 2021, 118, 41–48. [Google Scholar] [CrossRef]
- Wiethege, T.; Wesch, H.; Wegener, K.; Müller, K.M.; Mehlhorn, J.; Spiethoff, A.; Schömig, D.; Hollstein, M.; Bartsch, H. German uranium miner study–pathological and molecular genetic findings. German Uranium Miner Study, Research Group Pathology. Radiat. Res. 1999, 152, 52–55. [Google Scholar] [CrossRef]
- Thomas, G.A. The Chernobyl Tissue Bank: Integrating research on radiation-induced thyroid cancer. J. Radiol. Prot. 2012, 32, N77–N80. [Google Scholar] [CrossRef]
- Yoshida, K.; French, B.; Yoshida, N.; Hida, A.; Ohishi, W.; Kusunoki, Y. Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: The Adult Health Study of atomic-bomb survivors. Br. J. Haematol. 2019, 185, 107–115. [Google Scholar] [CrossRef]
- Kathren, R.L.; Tolmachev, S.Y. The US Transuranium and Uranium Registries (USTUR): A Five-Decade Follow-Up Of Plutonium and Uranium Workers. Health Phys. 2019, 117, 118–132. [Google Scholar] [CrossRef]
- Miura, S.; Akazawa, Y.; Kurashige, T.; Tukasaki, K.; Kondo, H.; Yokota, K.; Mine, M.; Miyazaki, Y.; Sekine, I.; Nakashima, M. The Nagasaki Atomic Bomb Survivors’ Tumor Tissue Bank. Lancet 2015, 386, 1738. [Google Scholar] [CrossRef]
- Loffredo, C.; Goerlitz, D.; Sokolova, S.; Leondaridis, L.; Zakharova, M.; Revina, V.; Kirillova, E. The Russian Human Radiobiological Tissue Repository: A Unique Resource for Studies of Plutonium-Exposed Workers. Radiat. Prot. Dosim. 2017, 173, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Fukutomi, K.; Kato, Y.; Hatakeyama, S.; Machinami, R.; Tanooka, H.; Ishikawa, Y.; Kumatori, T. 1998 results of the first series of follow-up studies on Japanese thorotrast patients and their relationships to an autopsy series. Radiat. Res. 1999, 152, S72. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.S.; Fujii, S.; Kurata, A.; Suzuki, M.; Hayashi, T.; Ohtsuki, Y.; Okada, Y.; Narita, M.; Takahashi, M.; Hosobe, S.; et al. p53 mutations in tumor and non-tumor tissues of thorotrast recipients: A model for cellular selection during radiation carcinogenesis in the liver. Carcinogenesis 1999, 20, 1283–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsche Gesetzliche Unfallversicherung E. V. (DGUV). 40 Years of Post-Occupational Health Surveillanc. [Brochure] 2014. Available online: https://publikationen.dguv.de/widgets/pdf/download/article/2967 (accessed on 18 November 2021).
- Weber, D.; Schreiber, J.; Brüning, T.; Johnen, G. Johnen Wismut-Sektionsarchiv: Wertvolle Res-source für die Bearbeitung arbeitsmedizi-nischer Fragestellungen mit modernen mo-lekularbiologischen Methoden. In Proceedings of the 50th Annual Congress of the German Society of Occupational and Environmental Medicine, Dortmund, Germany, 16–19 June 2010. [Google Scholar]
- Kreuzer, M.; Schnelzer, M.; Tschense, A.; Walsh, L.; Grosche, B. Cohort Profile: The German uranium miners cohort study (WISMUT cohort), 1946–2003. Int. J. Epidemiol. 2010, 39, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Walsh, L.; Grosche, B.; Schnelzer, M.; Tschense, A.; Sogl, M.; Kreuzer, M. A review of the results from the German Wismut uranium miners cohort. Radiat. Prot. Dosim. 2015, 164, 147–153. [Google Scholar] [CrossRef]
- Kahn, P. A Grisly Archive of Key Cancer Data. Science 1993, 259, 448–451. [Google Scholar] [CrossRef]
- Birschwilks, M.; Gruenberger, M.; Adelmann, C.; Tapio, S.; Gerber, G.; Schofield, P.N.; Grosche, B. The European Radiobiological Archives: Online Access to Data from Radiobiological Experiments. Radiat. Res. 2011, 175, 526–531. [Google Scholar] [CrossRef]
- Tapio, S.; Schofield, P.N.; Adelmann, C.; Atkinson, M.; Bard, J.L.B.; Bijwaard, H.; Birschwilks, M.; Dubus, P.; Fiette, L.; Gerber, G.; et al. Progress in updating the European Radiobiology Archives. Int. J. Radiat. Biol. 2008, 84, 930–936. [Google Scholar] [CrossRef]
- Khan, M.T.; Irlam-Jones, J.J.; Pereira, R.R.; Lane, B.; Valentine, H.R.; Aragaki, K.; Dyrskjøt, L.; McConkey, D.J.; Hoskin, P.J.; Choudhury, A.; et al. A miRNA signature predicts benefit from addition of hypoxia-modifying therapy to radiation treatment in invasive bladder cancer. Br. J. Cancer 2021, 125, 85–93. [Google Scholar] [CrossRef]
- Wu, B.; Shang, H.; Liu, J.; Liang, X.; Yuan, Y.; Chen, Y.; Wang, C.; Jing, H.; Cheng, W. Quantitative Proteomics Analysis of FFPE Tumor Samples Reveals the Influences of NET-1 siRNA Nanoparticles and Sonodynamic Therapy on Tetraspanin Protein Involved in HCC. Front. Mol. Biosci. 2021, 8, 678444. [Google Scholar] [CrossRef]
- Gaffney, E.F.; Riegman, P.H.; Grizzle, W.E.; Watson, P. Factors that drive the increasing use of FFPE tissue in basic and translational cancer research. Biotech. Histochem. 2018, 93, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Azimzadeh, O.; Barjaktarovic, Z.; Aubele, M.; Calzada-Wack, J.; Sarioglu, H.; Atkinson, M.J.; Tapio, S. Formalin-Fixed Paraffin-Embedded (FFPE) Proteome Analysis Using Gel-Free and Gel-Based Proteomics. J. Proteome Res. 2010, 9, 4710–4720. [Google Scholar] [CrossRef]
- Giusti, L.; Lucacchini, A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev. Proteom. 2013, 10, 165–177. [Google Scholar] [CrossRef]
- Steiner, C.; Ducret, A.; Tille, J.; Thomas, M.; McKee, T.A.; Rubbia-Brandt, L.; Scherl, A.; Lescuyer, P.; Cutler, P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 2014, 14, 441–451. [Google Scholar] [CrossRef]
- Metz, B.; Kersten, G.F.; Hoogerhout, P.; Brugghe, H.F.; Timmermans, H.A.; De Jong, A.D.; Meiring, H.; ten Hove, J.; Hennink, W.E.; Crommelin, D.J.; et al. Identification of formaldehyde-induced modifications in proteins: Reactions with model peptides. J. Biol. Chem. 2004, 279, 6235–6243. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Li, G.; Chen, Y.; Li, M.; Peng, F.; Li, C.; Li, F.; Yu, Y.; Ouyang, Y.; Xiao, Z.; et al. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J. Histochem. Cytochem. 2010, 58, 517–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, A.; Kumai, T.; Koizumi, H.; Nishikawa, H.; Kobayashi, S.; Tadokoro, M. Overexpression of heat shock protein 27 in squamous cell carcinoma of the uterine cervix: A proteomic analysis using archival formalin-fixed, paraffin-embedded tissues. Hum. Pathol. 2009, 40, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.R.; Liu, T.; Hu, J.; Darfler, M.; Fitzhugh, V.; Rinaggio, J.; Li, H. Quantitative Proteomic Analysis of Formalin Fixed Paraffin Embedded Oral HPV Lesions from HIV Patients. Open Proteom. J. 2008, 1, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Kerick, M.; Isau, M.; Timmermann, B.; Sültmann, H.; Herwig, R.; Krobitsch, S.; Schaefer, G.; Verdorfer, I.; Bartsch, G.; Klocker, H.; et al. Targeted high throughput sequencing in clinical cancer Settings: Formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med. Genom. 2011, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Solassol, J.; Ramos, J.; Crapez, E.; Saifi, M.; Mangé, A.; Vianès, E.; Lamy, P.-J.; Costes, V.; Maudelonde, T. KRAS Mutation Detection in Paired Frozen and Formalin-Fixed Paraffin-Embedded (FFPE) Colorectal Cancer Tissues. Int. J. Mol. Sci. 2011, 12, 3191–3204. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, W.; Thomas, G.A. Why Formalin-fixed, Paraffin-embedded Biospecimens Must Be Used in Genomic Medicine: An Evidence-based Review and Conclusion. J. Histochem. Cytochem. 2020, 68, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Ofner, R.; Ritter, C.; Ugurel, S.; Cerroni, L.; Stiller, M.; Bogenrieder, T.; Solca, F.; Schrama, D.; Becker, J.C. Non-reproducible sequence artifacts in FFPE tissue: An experience report. J. Cancer Res. Clin. Oncol. 2017, 143, 1199–1207. [Google Scholar] [CrossRef]
- Gilbert, M.T.P.; Haselkorn, T.; Bunce, M.; Sanchez, J.J.; Lucas, S.B.; Jewell, L.D.; Van Marck, E.; Worobey, M. The Isolation of Nucleic Acids from Fixed, Paraffin-Embedded Tissues–Which Methods Are Useful When? PLoS ONE 2007, 2, e537. [Google Scholar] [CrossRef]
- Evers, D.L.; Fowler, C.B.; Cunningham, B.R.; Mason, J.T.; O’Leary, T.J. The Effect of Formaldehyde Fixation on RNA: Optimization of Formaldehyde Adduct Removal. J. Mol. Diagn. 2011, 13, 282–288. [Google Scholar] [CrossRef]
- Esteve-Codina, A.; Arpi, O.; Martinez-García, M.; Pineda, E.; Mallo, M.; Gut, M.; Carrato, C.; Rovira, A.; Lopez, R.; Tortosa, A.; et al. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples. PLoS ONE 2017, 12, e0170632. [Google Scholar] [CrossRef] [Green Version]
- Hedegaard, J.; Thorsen, K.; Lund, M.K.; Hein, A.-M.K.; Hamilton-Dutoit, S.; Vang, S.; Nordentoft, I.K.; Birkenkamp-Demtröder, K.; Kruhøffer, M.; Hager, H.; et al. Next-Generation Sequencing of RNA and DNA Isolated from Paired Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Samples of Human Cancer and Normal Tissue. PLoS ONE 2014, 9, e98187. [Google Scholar] [CrossRef] [Green Version]
- Kojima, K.; April, C.; Canasto-Chibuque, C.; Chen, X.; Deshmukh, M.; Venkatesh, A.; Tan, P.S.; Kobayashi, M.; Kumada, H.; Fan, J.-B.; et al. Transcriptome Profiling of Archived Sectioned Formalin-Fixed Paraffin-Embedded (AS-FFPE) Tissue for Disease Classification. PLoS ONE 2014, 9, e86961. [Google Scholar] [CrossRef]
- Newton, Y.; Sedgewick, A.J.; Cisneros, L.; Golovato, J.; Johnson, M.; Szeto, C.W.; Rabizadeh, S.; Sanborn, J.Z.; Benz, S.C.; Vaske, C. Large scale, robust, and accurate whole transcriptome profiling from clinical formalin-fixed paraffin-embedded samples. Sci. Rep. 2020, 10, 17597. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.S.; Taylor, J.; Valentine, H.R.; Irlam, J.J.; Eustace, A.; Hoskin, P.; Miller, C.; West, C. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br. J. Cancer 2012, 107, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Hui, A.B.; Lenarduzzi, M.; Krushel, T.; Waldron, L.; Pintilie, M.; Shi, W.; Perez-Ordonez, B.; Jurisica, I.; O’Sullivan, B.; Waldron, J.; et al. Comprehensive MicroRNA Profiling for Head and Neck Squamous Cell Carcinomas. Clin. Cancer Res. 2010, 16, 1129–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Smyth, P.; Flavin, R.; Cahill, S.; Denning, K.; Aherne, S.; Guenther, S.M.; O’Leary, J.J.; Sheils, O. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol. 2007, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Hoefig, K.P.; Thorns, C.; Roehle, A.; Kaehler, C.; Wesche, K.O.; Repsilber, D.; Branke, B.; Thiere, M.; Feller, A.C.; Merz, H. Unlocking pathology archives for microRNA-profiling. Anticancer Res. 2008, 28, 119–123. [Google Scholar] [PubMed]
- Neef, S.K.; Winter, S.; Hofmann, U.; Muerdter, T.E.; Schaeffeler, E.; Horn, H.; Buck, A.; Walch, A.; Hennenlotter, J.; Ott, G.; et al. Optimized protocol for metabolomic and lipidomic profiling in formalin-fixed paraffin-embedded kidney tissue by LC-MS. Anal. Chim. Acta 2020, 1134, 125–135. [Google Scholar] [CrossRef]
- Azimzadeh, O.; Atkinson, M.; Tapio, S. Proteomics in radiation research: Present status and future perspectives. Radiat. Environ. Biophys. 2014, 53, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Tapio, S.; Hornhardt, S.; Gomolka, M.; Leszczynski, D.; Posch, A.; Thalhammer, S.; Atkinson, M. Use of proteomics in radiobiological research: Current state of the art. Radiat. Environ. Biophys. 2010, 49, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Leszczynski, D. Radiation proteomics: A brief overview. Proteomics 2014, 14, 481–488. [Google Scholar] [CrossRef]
- Azimzadeh, O.; Tapio, S. Proteomics landscape of radiation-induced cardiovascular disease: Somewhere over the paradigm. Expert Rev. Proteom. 2017, 14, 987–996. [Google Scholar] [CrossRef]
- Azimzadeh, O.; Tapio, S. Proteomics approaches to investigate cancer radiotherapy outcome: Slow train coming. Transl. Cancer Res. 2017, 6, S779–S788. [Google Scholar] [CrossRef]
- Nirmalan, N.J.; Harnden, P.; Selby, P.J.; Banks, R.E. Development and validation of a novel protein extraction methodology for quantitation of protein expression in formalin-fixed paraffin-embedded tissues using western blotting. J. Pathol. 2009, 217, 497–506. [Google Scholar] [CrossRef]
- Tanca, A.; Addis, M.F.; Pagnozzi, D.; Cossu-Rocca, P.; Tonelli, R.; Falchi, G.; Eccher, A.; Roggio, T.; Fanciulli, G.; Uzzau, S. Proteomic analysis of formalin-fixed, paraffin-embedded lung neuroendocrine tumor samples from hospital archives. J. Proteom. 2011, 74, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Tanca, A.; Pagnozzi, D.; Burrai, G.P.; Polinas, M.; Uzzau, S.; Antuofermo, E.; Addis, M.F. Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC-MS/MS and spectral counting. J. Proteom. 2012, 77, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, J.R.; Duś, K.; Mann, M. Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10,000 proteins. Proteom.-Clin. Appl. 2013, 7, 225–233. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- O’Rourke, M.B.; Padula, M.P. Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval. Biotechniques 2016, 60, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Addis, M.F.; Tanca, A.; Pagnozzi, D.; Rocca, S.; Uzzau, S. 2-D PAGE and MS analysis of proteins from formalin-fixed, paraffin-embedded tissues. Proteomics 2009, 9, 4329–4339. [Google Scholar] [CrossRef]
- Tanca, A.; Pisanu, S.; Biosa, G.; Pagnozzi, D.; Antuofermo, E.; Burrai, G.P.; Canzonieri, V.; Cossu-Rocca, P.; De Re, V.; Eccher, A.; et al. Application of 2D-DIGE to formalin-fixed diseased tissue samples from hospital repositories: Results from four case studies. Proteom.-Clin. Appl. 2013, 7, 252–263. [Google Scholar] [CrossRef]
- Hood, B.L.; Conrads, T.P.; Veenstra, T.D. Mass spectrometric analysis of formalin-fixed paraffin-embedded tissue: Unlocking the proteome within. Proteomics 2006, 6, 4106–4114. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.-R.; Liu, C.; Balgley, B.M.; Lee, C.; Taylor, C.R. Protein Extraction from Formalin-fixed, Paraffin-embedded Tissue Sections: Quality Evaluation by Mass Spectrometry. J. Histochem. Cytochem. 2006, 54, 739–743. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Wang, W.; Rudnick, P.A.; Song, T.; Li, J.; Zhuang, Z.; Weil, R.J.; DeVoe, D.; Lee, C.S.; Balgley, B. Proteome Analysis of Microdissected Formalin-fixed and Paraffin-embedded Tissue Specimens. J. Histochem. Cytochem. 2007, 55, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Negishi, A.; Masuda, M.; Ono, M.; Honda, K.; Shitashige, M.; Satow, R.; Sakuma, T.; Kuwabara, H.; Nakanishi, Y.; Kanai, Y.; et al. Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma. Cancer Sci. 2009, 100, 1605–1611. [Google Scholar] [CrossRef]
- Nirmalan, N.J.; Harnden, P.; Selby, P.J.; Banks, R.E. Mining the archival formalin-fixed paraffin-embedded tissue proteome: Opportunities and challenges. Mol. BioSyst. 2008, 4, 712–720. [Google Scholar] [CrossRef]
- Slebos, R.J.; Jehmlich, N.; Brown, B.; Yin, Z.; Chung, C.H.; Yarbrough, W.G.; Liebler, D.C. Proteomic analysis of oropharyngeal carcinomas reveals novel HPV-associated biological pathways. Int. J. Cancer 2013, 132, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Sepiashvili, L.; Waggott, D.; Hui, A.; Shi, W.; Su, S.; Ignatchenko, A.; Ignatchenko, V.; Laureano, M.; Huang, S.H.; Xu, W.; et al. Integrated Omic Analysis of Oropharyngeal Carcinomas Reveals Human Papillomavirus (HPV)–dependent Regulation of the Activator Protein 1 (AP-1) Pathway. Mol. Cell. Proteom. 2014, 13, 3572–3584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, J.C.; Lamb, D.S.; Delahunt, B.; Murray, J.; Bethwaite, P.B.; Ferguson, P.C.; Nacey, J.N.; Sondhauss, S.; Jordan, T.W. Proteins from formalin-fixed paraffin-embedded prostate cancer sections that predict the risk of metastatic disease. Clin. Proteom. 2015, 12, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsukawa, S.; Morita, K.; Negishi, A.; Harada, H.; Nakajima, Y.; Shimamoto, H.; Tomioka, H.; Tanaka, K.; Ono, M.; Yamada, T.; et al. Galectin-7 as a potential predictive marker of chemo- and/or radio-therapy resistance in oral squamous cell carcinoma. Cancer Med. 2014, 3, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Netto, E.; Santos, H.; Carvalho, L.; Capelo-Martínez, J.L.; Rito, M.; Cabeçadas, J.; Roldão, M. Label-free quantitative mass spectrometry from formalin-fixed paraffin-embedded samples of nasopharyngeal carcinoma: Preliminary results from a non-endemic European cohort of patients. Rep. Pr. Oncol. Radiother. 2020, 25, 746–753. [Google Scholar] [CrossRef]
- Azimzadeh, O.; Azizova, T.; Merl-Pham, J.; Subramanian, V.; Bakshi, M.V.; Moseeva, M.; Zubkova, O.; Hauck, S.; Anastasov, N.; Atkinson, M.; et al. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers. Oncotarget 2017, 8, 9067–9078. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, P.J.; Getz, G.; Korbel, J.O.; Stuart, J.M.; Jennings, J.L.; Stein, L.D.; Perry, M.D.; Nahal-Bose, H.K.; Ouellette, B.F.; Li, C.H.; et al. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar]
- Vahrenkamp, J.M.; Szczotka, K.; Dodson, M.K.; Jarboe, E.A.; Soisson, A.P.; Gertz, J. FFPEcap-seq: A method for sequencing capped RNAs in formalin-fixed paraffin-embedded samples. Genome Res. 2019, 29, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, A.K.; Selli, C.; Martinez-Perez, C.; Fernando, A.; Renshaw, L.; Keys, J.; Figueroa, J.D.; He, X.; Tanioka, M.; Munro, A.F.; et al. Unlocking the transcriptomic potential of formalin-fixed paraffin embedded clinical tissues: Comparison of gene expression profiling approaches. BMC Bioinform. 2020, 21, 30. [Google Scholar] [CrossRef]
- Sinicropi, D.; Qu, K.; Collin, F.; Crager, M.; Liu, M.-L.; Pelham, R.J.; Pho, M.; Rossi, A.D.; Jeong, J.; Scott, A.; et al. Whole Transcriptome RNA-Seq Analysis of Breast Cancer Recurrence Risk Using Formalin-Fixed Paraffin-Embedded Tumor Tissue. PLoS ONE 2012, 7, e40092. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; He, X.; Hoadley, K.A.; Parker, J.S.; Hayes, D.N.; Perou, C.M. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genom. 2014, 15, 419. [Google Scholar] [CrossRef] [Green Version]
- Veldman-Jones, M.H.; Brant, R.; Rooney, C.; Geh, C.; Emery, H.; Harbron, C.G.; Wappett, M.; Sharpe, A.; Dymond, M.; Barrett, J.C.; et al. Evaluating Robustness and Sensitivity of the NanoString Technologies nCounter Platform to Enable Multiplexed Gene Expression Analysis of Clinical Samples. Cancer Res. 2015, 75, 2587–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieslik, M.; Chugh, R.; Wu, Y.-M.; Wu, M.; Brennan, C.A.; Lonigro, R.J.; Su, F.; Wang, R.; Siddiqui, J.; Mehra, R.; et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. 2015, 25, 1372–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Rochefordiere, A.; Kamal, M.; Floquet, A.; Thomas, L.; Petrow, P.; Petit, T.; Pop, M.; Fabbro, M.; Kerr, C.; Joly, F.; et al. PIK3CA Pathway Mutations Predictive of Poor Response Following Standard Radiochemotherapy ± Cetuximab in Cervical Cancer Patients. Clin. Cancer Res. 2015, 21, 2530–2537. [Google Scholar] [CrossRef] [Green Version]
- Nuryadi, E.; Sasaki, Y.; Hagiwara, Y.; Permata, T.B.M.; Sato, H.; Komatsu, S.; Yoshimoto, Y.; Murata, K.; Ando, K.; Kubo, N.; et al. Mutational analysis of uterine cervical cancer that survived multiple rounds of radiotherapy. Oncotarget 2018, 9, 32642–32652. [Google Scholar] [CrossRef] [Green Version]
- Darwis, N.D.M.; Nachankar, A.; Sasaki, Y.; Matsui, T.; Noda, S.-E.; Murata, K.; Tamaki, T.; Ando, K.; Okonogi, N.; Shiba, S.; et al. FGFR Signaling as a Candidate Therapeutic Target for Cancers Resistant to Carbon Ion Radiotherapy. Int. J. Mol. Sci. 2019, 20, 4563. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, Y.; Sasaki, Y.; Murata, K.; Noda, S.-E.; Miyasaka, Y.; Hamamoto, J.; Furuya, M.; Hirato, J.; Suzuki, Y.; Ohno, T.; et al. Mutation profiling of uterine cervical cancer patients treated with definitive radiotherapy. Gynecol. Oncol. 2020, 159, 546–553. [Google Scholar] [CrossRef]
- Moertl, S.; Mutschelknaus, L.; Heider, T.; Atkinson, M.J. MicroRNAs as novel elements in personalized radiotherapy. Transl. Cancer Res. 2016, 5, S1262–S1269. [Google Scholar] [CrossRef]
- Pajic, M.; Froio, D.; Daly, S.; Doculara, L.; Millar, E.; Graham, P.H.; Drury, A.; Steinmann, A.; de Bock, C.; Boulghourjian, A.; et al. miR-139-5p Modulates Radiotherapy Resistance in Breast Cancer by Repressing Multiple Gene Networks of DNA Repair and ROS Defense. Cancer Res. 2018, 78, 501–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatano, K.; Kumar, B.; Zhang, Y.; Coulter, J.B.; Hedayati, M.; Mears, B.; Ni, X.; Kudrolli, T.A.; Chowdhury, W.H.; Rodriguez, R.; et al. A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation. Nucleic Acids Res. 2015, 43, 4075–4086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Ma, C.-N.; Zhou, N.-N.; Li, X.-D.; Zhang, Y.-J. Up-regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci. Rep. 2016, 6, 31651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, D.; De Carvalho, A.C.; Horst, M.A.; Carvalho, A.L.; Scapulatempo-Neto, C.; Vettore, A.L. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. J. Transl. Med. 2015, 13, 262. [Google Scholar] [CrossRef] [Green Version]
- Selmansberger, M.; Braselmann, H.; Hess, J.; Bogdanova, T.; Abend, M.; Tronko, M.; Brenner, A.; Zitzelsberger, H.; Unger, K. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort. Carcinogenesis 2015, 36, 1381–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, C.M.; Braselmann, H.; Hess, J.; Klymenko, S.V.; Chumak, V.V.; Zakhartseva, L.M.; Bakhanova, E.V.; Walch, A.K.; Selmansberger, M.; Samaga, D.; et al. A genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer. Int. J. Cancer 2018, 143, 1505–1515. [Google Scholar] [CrossRef]
- Sprung, R.W.; Brock, J.W.C.; Tanksley, J.P.; Li, M.; Washington, M.K.; Slebos, R.J.C.; Liebler, D.C. Equivalence of Protein Inventories Obtained from Formalin-fixed Paraffin-embedded and Frozen Tissue in Multidimensional Liquid Chromatography-Tandem Mass Spectrometry Shotgun Proteomic Analysis. Mol. Cell. Proteom. 2009, 8, 1988–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, I.; Tröscher, A.; Brunner, F.; Rubino, S.J.; Bien, C.G.; Weiner, H.L.; Lassmann, H.; Bauer, J. Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples. Sci. Rep. 2018, 8, 6351. [Google Scholar] [CrossRef]
- Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites 2019, 9, 76. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azimzadeh, O.; Gomolka, M.; Birschwilks, M.; Saigusa, S.; Grosche, B.; Moertl, S. Advanced Omics and Radiobiological Tissue Archives: The Future in the Past. Appl. Sci. 2021, 11, 11108. https://doi.org/10.3390/app112311108
Azimzadeh O, Gomolka M, Birschwilks M, Saigusa S, Grosche B, Moertl S. Advanced Omics and Radiobiological Tissue Archives: The Future in the Past. Applied Sciences. 2021; 11(23):11108. https://doi.org/10.3390/app112311108
Chicago/Turabian StyleAzimzadeh, Omid, Maria Gomolka, Mandy Birschwilks, Shin Saigusa, Bernd Grosche, and Simone Moertl. 2021. "Advanced Omics and Radiobiological Tissue Archives: The Future in the Past" Applied Sciences 11, no. 23: 11108. https://doi.org/10.3390/app112311108
APA StyleAzimzadeh, O., Gomolka, M., Birschwilks, M., Saigusa, S., Grosche, B., & Moertl, S. (2021). Advanced Omics and Radiobiological Tissue Archives: The Future in the Past. Applied Sciences, 11(23), 11108. https://doi.org/10.3390/app112311108