Advance on the Capitalization of Grape Peels By-Product in Common Wheat Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Conditioning and Pasta Making
2.2. Dough Visco-Elasticity Evaluation
2.3. Texture of Dough Evaluation
2.4. Chemical Compounds Determination
2.5. Uncooked Pasta Color Evaluation
2.6. Pasta Cooking Behavior Determination
2.7. Uncooked and Cooked Pasta Texture Evaluation
2.8. Statistical Analysis
3. Results
3.1. Dough Visco-Elasticity
3.2. Texture of Dough
3.3. Pasta Chemical Compounds
3.4. Uncooked Pasta Color
3.5. Pasta Cooking Behavior
3.6. Uncooked and Cooked Pasta Texture
3.7. Relations between Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OIV. State of the world vitivinicultural sector in 2019. Int. Organ. Vine Wine 2020, 1–15. [Google Scholar]
- Banu, C. Food Industry Engineer’s Manual; Technical Publisher: Bucharest, Romania, 1999. [Google Scholar]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives Kyle. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of grape pomace powder addition on chemical, nutritional and technological properties of cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Use of Grape Peels By-Product for Wheat Pasta Manufacturing. Plants 2021, 10, 926. [Google Scholar] [CrossRef] [PubMed]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Mironeasa, C. Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels. Food Bioprocess. Technol. 2019, 12, 228–245. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Szwengiel, A.; Pacyński, M. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 2011, 46, 1485–1493. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Tang, G.Y.; Zhao, C.N.; Liu, Q.; Feng, X.L.; Xu, X.Y.; Cao, S.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, H. Bin Potential of grape wastes as a natural source of bioactive compounds. Molecules 2018, 23, 2598. [Google Scholar] [CrossRef] [Green Version]
- Hosu, A.; Cristea, V.M.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Cádiz-Gurrea, M.D.L.L.; Borrás-Linares, I.; Lozano-Sánchez, J.; Joven, J.; Fernández-Arroyo, S.; Segura-Carretero, A. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. Int. J. Mol. Sci. 2017, 18, 376. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Rondini, G.; Calabretta, M.M.; Michelini, E.; Vallini, V.; Fava, F.; Roda, A.; Minnucci, G.; Tassoni, A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotechnol. 2017, 39, 51–58. [Google Scholar] [CrossRef]
- Khatkar, B.S.; David Schofield, J. Dynamic rheology of wheat flour dough. I. Non-linear viscoelastic behaviour. J. Sci. Food Agric. 2002, 82, 827–829. [Google Scholar] [CrossRef]
- Taşeri, L.; Aktaş, M.; Şevik, S.; Gülcü, M.; Uysal Seçkin, G.; Aktekeli, B. Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chem. 2018, 260, 152–159. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Pereira Basílio, L.S.; Tecchio, M.A.; Pereira Lima, G.P. Bioactive compounds and antioxidant capacity of grape pomace flours. LWT 2021, 135, 110053. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Iuga, M.; Mironeasa, S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, V.; Padalino, L.; Conte, A.; Del Nobile, M.A.; Briviba, K. Red grape marc flour as food ingredient in durum wheat spaghetti: Nutritional evaluation and bioaccessibility of bioactive compounds. Food Sci. Technol. Res. 2018, 24, 1093–1100. [Google Scholar] [CrossRef]
- Lou, W.; Zhou, H.; Li, B.; Nataliya, G. Rheological, pasting and sensory properties of biscuits supplemented with grape pomace powder. Food Sci. Technol. 2021, 2061, 1–10. [Google Scholar] [CrossRef]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadsticks fortification with red grape pomace: Effect on nutritional, technological, and sensory properties. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef]
- Lou, W.; Li, B.; Nataliya, G. The influence of Cabernet Sauvignon wine grape pomace powder addition on the rheological and microstructural properties of wheat dough. CyTA J. Food 2021, 19, 751–761. [Google Scholar] [CrossRef]
- Yang, S.; Jeong, S.; Lee, S. Elucidation of rheological properties and baking performance of frozen doughs under different thawing conditions. J. Food Eng. 2020, 284, 110084. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu-Iuga, M.; Dimian, M.; Mironeasa, S. Development and quality evaluation of gluten-free pasta with grape peels and whey powders. LWT 2020, 130, 109714. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Simultaneous optimization of wheat heat moisture treatment and grape peels addition for pasta making. LWT Food Sci. Technol. 2021, 150, 112011. [Google Scholar] [CrossRef]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef] [PubMed]
- Bergman, C.; Gualberto, D.; Weber, C. Development of a high-temperature-dried soft wheat pasta supplemented with cowpea (Vigna unguiculata (L.) Walp)—Cooking quality, color, and sensory evaluation. Cereal Chem. 1994, 71, 523–527. [Google Scholar]
- FAO/IAEA. Quantification of Tannins in Tree Foliage. A Laboratory Manual for the FAO/IAEA Co-Ordinated Research Project on Use of Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Rumina; IAEA: Vienna, Austria, 2000. [Google Scholar]
- Melilli, M.G.; Pagliaro, A.; Scandurra, S.; Gentile, C.; Di Stefano, V. Omega-3 rich foods: Durum wheat spaghetti fortified with Portulaca oleracea. Food Biosci. 2020, 37, 100730. [Google Scholar] [CrossRef]
- Giménez, M.A.; González, R.J.; Wagner, J.; Torres, R.; Lobo, M.O.; Samman, N.C. Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia faba) spaghetti type pasta. Food Chem. 2013, 136, 538–545. [Google Scholar] [CrossRef]
- Meral, R.; Dogan, I.S. Grape seed as a functional food ingredient in bread-making. Int. J. Food Sci. Nutr. 2013, 64, 372–379. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L.; Jiang, L.; Wang, Y.; Yang, G.; He, G. Effects of tannic acid on gluten protein structure, dough properties and bread quality of Chinese wheat. J. Sci. Food Agric. 2010, 90, 2462–2468. [Google Scholar] [CrossRef]
- Chen, S.X.; Ni, Z.J.; Thakur, K.; Wang, S.; Zhang, J.G.; Shang, Y.F.; Wei, Z.J. Effect of grape seed power on the structural and physicochemical properties of wheat gluten in noodle preparation system. Food Chem. 2021, 355, 129500. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Wyrwisz, J.; Piwińska, M.; Wierzbicka, A. The effect of oat fibre powder particle size on the physical properties of wheat bread rolls. Food Technol. Biotechnol. 2016, 54, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tsatsaragkou, K.; Kara, T.; Ritzoulis, C.; Mandala, I.; Rosell, C.M. Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling. Food Bioprocess. Technol. 2017, 10, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, S.; Colonna, P.; Buléon, A.; Della Valle, G. Physicochemical behaviors of sugars, lipids, and gluten in short dough and biscuit. J. Agric. Food Chem. 2000, 48, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Optimization of textural properties of noodles with soluble fiber, dough mixing time and different water levels. J. Cereal Sci. 2016, 69, 104–110. [Google Scholar] [CrossRef]
- Espinosa-Solis, V.; Zamudio-Flores, P.B.; Tirado-Gallegos, J.M.; Ramírez-Mancinas, S.; Olivas-Orozco, G.I.; Espino-Díaz, M.; Hernández-González, M.; García-Cano, V.G.; Sánchez-Ortíz, O.; Buenrostro-Figueroa, J.J.; et al. Evaluation of cooking quality, nutritional and texture characteristics of pasta added with oat bran and apple flour. Foods 2019, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Bender, A.B.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape Pomace Skins and the Effects of Its Inclusion in the Technological Properties of Muffins. J. Culin. Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Gomes, T.M.; Toaldo, I.M.; da Silva Haas, I.C.; Burin, V.M.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Differential contribution of grape peel, pulp, and seed to bioaccessibility of micronutrients and major polyphenolic compounds of red and white grapes through simulated human digestion. J. Funct. Foods 2019, 52, 699–708. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Rocchetti, G.; Giuberti, G.; Busconi, M.; Marocco, A.; Trevisan, M.; Lucini, L. Pigmented sorghum polyphenols as potential inhibitors of starch digestibility: An in vitro study combining starch digestion and untargeted metabolomics. Food Chem. 2020, 312, 126077. [Google Scholar] [CrossRef] [PubMed]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef] [PubMed]
- Moraes, É.A.; Marineli, R.D.S.; Lenquiste, S.A.; Steel, C.J.; De Menezes, C.B.; Queiroz, V.A.V.; Maróstica Júnior, M.R. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem. 2015, 180, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Bustos, M.C.; Paesani, C.; Quiroga, F.; León, A.E. Technological and sensorial quality of berry-enriched pasta. Cereal Chem. 2019, 96, 967–976. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT Food Sci. Technol. 2014, 58, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Pasqualone, A.; Gambacorta, G.; Summo, C.; Caponio, F.; Di Miceli, G.; Flagella, Z.; Marrese, P.P.; Piro, G.; Perrotta, C.; De Bellis, L.; et al. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 2016, 213, 545–553. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Mościcki, L. Effect of wheat bran addition and screw speed on microstructure and textural characteristics of common wheat precooked pasta-like products. Polish J. Food Nutr. Sci. 2011, 61, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Feng, B.; He, S.; Su, Z.; Zheng, G. Resveratrol combined with total flavones of hawthorn alleviate the endothelial cells injury after coronary bypass graft surgery. Phytomedicine 2018, 40, 20–26. [Google Scholar] [CrossRef] [PubMed]
Sample | Hardness (N) | Resilience (Adim.) | Springiness × 10−2 (Adim.) | Cohesiveness (Adim.) |
---|---|---|---|---|
Control | 14.13 ± 0.62 f | 1.22 ± 0.06 abc | 99.55 ± 0.03 b | 0.36 ± 0.02 c |
GP1% | 18.51 ± 0.18 e | 1.28 ± 0.01 a | 99.57 ± 0.08 ab | 0.39 ± 0.01 bc |
GP2% | 24.71 ± 0.57 d | 1.25 ± 0.05 ab | 99.60 ± 0.07 ab | 0.39 ± 0.01 b |
GP3% | 26.64 ± 0.36 c | 1.22 ± 0.01 abc | 99.62 ± 0.08 ab | 0.40 ± 0.00 b |
GP4% | 28.21 ± 0.08 c | 1.18 ± 0.04 abc | 99.66 ± 0.11 ab | 0.41 ± 0.01 ab |
GP5% | 32.11 ± 0.51 b | 1.18 ± 0.02 bc | 99.73 ± 0.00 ab | 0.42 ± 0.01 ab |
GP6% | 38.77 ± 1.19 a | 1.14 ± 0.01 c | 99.75 ± 0.91 a | 0.43 ± 0.01 a |
Sample | Moisture (%) | Crude Ash (%) | Crude Fat (%) | Crude Protein (%) | Carbohydrates (%) |
---|---|---|---|---|---|
Control | 11.54 ± 0.03 a | 0.52 ± 0.04 d | 0.96 ± 0.02 c | 12.39 ± 0.18 a | 72.11 ± 0.08 e |
GP1% | 11.53 ± 0.03 a | 0.56 ± 0.04 cd | 0.97 ± 0.02 bc | 12.36 ± 0.18 a | 74.56 ± 0.12 a |
GP2% | 11.54 ± 0.02 a | 0.59 ± 0.02 bcd | 0.98 ± 0.01 abc | 12.32 ± 0.17 a | 74.21 ± 0.08 ab |
GP3% | 11.40 ± 0.17 a | 0.63 ± 0.04 abcd | 1.00 ± 0.04 abc | 12.29 ± 0.15 a | 74.09 ± 0.20 b |
GP4% | 11.42 ± 0.18 a | 0.66 ± 0.06 abc | 1.01 ± 0.06 abc | 12.26 ± 0.17 a | 73.60 ± 0.26 c |
GP5% | 11.48 ± 0.11 a | 0.70 ± 0.04 ab | 1.02 ± 0.02 ab | 12.22 ± 0.14 a | 73.27 ± 0.21 cd |
GP6% | 11.44 ± 0.16 a | 0.74 ± 0.04 a | 1.04 ± 0.02 a | 12.19 ± 0.16 a | 73.10 ± 0.07 d |
Sample | Cooking Behavior | Color | |||
---|---|---|---|---|---|
Water Absorption (%) | Cooking Loss (%) | L* | a* | b* | |
Control | 161.14 ± 5.33 a | 5.22 ± 0.12 de | 72.54 ± 0.17 a | −2.31 ± 0.20 e | 21.61 ± 0.24 a |
GP1% | 129.46 ± 3.55 c | 4.55 ± 0.30 e | 68.37 ± 0.09 b | −0.56 ± 0.02 d | 21.45 ± 0.64 a |
GP2% | 139.38 ± 1.37 bc | 5.43 ± 0.18 cd | 65.97 ± 1.11 c | 0.34 ± 0.06 c | 20.94 ± 0.48 a |
GP3% | 145.76 ± 4.54 abc | 5.72 ± 0.17 cd | 62.88 ± 0.52 d | 0.56 ± 0.02 d | 20.57 ± 0.49 ab |
GP4% | 147.02 ± 12.62 ab | 6.09 ± 0.31 c | 58.32 ± 0.28 e | 0.99 ± 0.07 b | 19.62 ± 0.26 bc |
GP5% | 149.46 ± 1.08 ab | 7.28 ± 0.36 b | 55.20 ± 0.50 f | 1.40 ± 0.04 a | 18.73 ± 0.23 cd |
GP6% | 155.91 ± 5.04 ab | 7.99 ± 0.14 a | 52.57 ± 0.31 g | 1.45 ± 0.26 a | 18.48 ± 0.23 d |
Sample | Uncooked Pasta | Cooked Pasta | ||
---|---|---|---|---|
Breaking Force (N) | Elasticity × 10−2 (adim.) | Chewiness (N) | Firmness (N) | |
Control | 41.26 ± 1.24 cd | 99.83 ± 0.07 a | 48.79 ± 2.19 a | 74.05 ± 0.91 a |
GP1% | 41.00 ± 1.01 d | 99.87 ± 0.01 a | 39.57 ± 0.09 b | 62.67 ± 1.85 b |
GP2% | 42.73 ± 1.95 cd | 99.87 ± 0.00 a | 38.98 ± 1.65 bc | 58.64 ± 0.26 bc |
GP3% | 44.32 ± 1.37 c | 99.91 ± 0.08 a | 36.29 ± 1.37 bcd | 57.40 ± 2.89 bc |
GP4% | 49.02 ± 0.15 b | 99.92 ± 0.07 a | 35.51 ± 0.99 cd | 56.43 ± 2.80 cd |
GP5% | 55.76 ± 0.54 a | 99.94 ± 0.06 a | 35.20 ± 1.17 d | 54.04 ± 1.83 cd |
GP6% | 58.46 ± 0.17 a | 99.96 ± 0.07 a | 34.11 ± 1.01 d | 51.67 ± 2.09 d |
Variables | WA | CL | L* | a* | b* | Moisture | Crude Ash | Crude Fat | Crude Protein | Crude Fiber | Carbohydr. | TP | RS | Hardness | Resilience | Springiness | Cohesiveness | Breaking f. | Elasticity | Chewiness | Firmness |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WA | 1.00 | 0.53 | −0.21 | −0.11 | −0.34 | −0.23 | 0.24 | 0.24 | −0.24 | 0.36 | −0.94 | 0.42 | −0.06 | 0.20 | −0.70 | 0.30 | 0.02 | 0.41 | 0.17 | 0.25 | 0.16 |
CL | 1.00 | −0.91 | 0.72 | −0.96 | −0.50 | 0.92 | 0.92 | −0.92 | 0.95 | −0.36 | 0.99 | 0.73 | 0.91 | −0.93 | 0.96 | 0.85 | 0.98 | 0.88 | −0.62 | −0.71 | |
L* | 1.00 | −0.92 | 0.98 | 0.66 | −0.99 | −0.99 | 0.99 | −0.99 | 0.01 | −0.95 | −0.89 | −0.97 | 0.83 | −0.98 | −0.98 | −0.95 | −0.98 | 0.87 | 0.90 | ||
a* | 1.00 | −0.85 | −0.63 | 0.92 | 0.92 | −0.92 | 0.86 | 0.34 | 0.82 | 0.99 | 0.92 | −0.59 | 0.86 | 0.95 | 0.77 | 0.92 | −0.98 | −0.99 | |||
b* | 1.00 | 0.58 | −0.98 | −0.98 | 0.98 | −0.99 | 0.17 | −0.98 | −0.82 | −0.94 | 0.89 | −0.99 | −0.93 | −0.98 | −0.95 | 0.77 | 0.82 | ||||
Moisture | 1.00 | −0.67 | −0.67 | 0.67 | −0.65 | −0.05 | −0.57 | −0.62 | −0.62 | 0.64 | −0.56 | −0.58 | −0.50 | −0.74 | 0.66 | 0.60 | |||||
Crude ash | 1.00 | 0.99 | −0.99 | 0.99 | −0.02 | 0.97 | 0.90 | 0.98 | −0.84 | 0.98 | 0.97 | 0.95 | 0.99 | −0.86 | −0.91 | ||||||
Crude fat | 1.00 | −0.99 | 0.99 | −0.02 | 0.97 | 0.90 | 0.98 | −0.84 | 0.98 | 0.97 | 0.95 | 0.99 | −0.86 | −0.91 | |||||||
Crude proteins | 1.00 | −0.99 | 0.02 | −0.97 | −0.90 | −0.98 | 0.84 | −0.98 | −0.97 | −0.95 | −0.99 | 0.86 | 0.91 | ||||||||
Crude fiber | 1.00 | −0.17 | 0.97 | 0.84 | 0.95 | −0.91 | 0.98 | 0.93 | 0.97 | 0.96 | −0.78 | −0.83 | |||||||||
Carbohydrates | 1.00 | −0.22 | 0.32 | 0.04 | 0.53 | −0.13 | 0.17 | −0.27 | 0.06 | −0.48 | −0.40 | ||||||||||
TP | 1.00 | 0.83 | 0.95 | −0.90 | 0.98 | 0.90 | 0.97 | 0.93 | −0.73 | −0.80 | |||||||||||
RS | 1.00 | 0.92 | −0.58 | 0.83 | 0.92 | 0.74 | 0.89 | −0.94 | −0.98 | ||||||||||||
Hardness | 1.00 | −0.79 | 0.95 | 0.97 | 0.91 | 0.97 | −0.87 | −0.93 | |||||||||||||
Resilience | 1.00 | −0.86 | −0.71 | −0.90 | −0.81 | 0.49 | 0.55 | ||||||||||||||
Springiness | 1.00 | 0.95 | 0.99 | 0.95 | −0.78 | −0.84 | |||||||||||||||
Cohesiveness | 1.00 | 0.90 | 0.97 | −0.93 | −0.96 | ||||||||||||||||
Breaking force | 1.00 | 0.91 | −0.68 | −0.75 | |||||||||||||||||
Elasticity | 1.00 | −0.90 | −0.91 | ||||||||||||||||||
Chewiness | 1.00 | 0.98 | |||||||||||||||||||
Firmness | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu-Iuga, M.; Mironeasa, S. Advance on the Capitalization of Grape Peels By-Product in Common Wheat Pasta. Appl. Sci. 2021, 11, 11129. https://doi.org/10.3390/app112311129
Ungureanu-Iuga M, Mironeasa S. Advance on the Capitalization of Grape Peels By-Product in Common Wheat Pasta. Applied Sciences. 2021; 11(23):11129. https://doi.org/10.3390/app112311129
Chicago/Turabian StyleUngureanu-Iuga, Mădălina, and Silvia Mironeasa. 2021. "Advance on the Capitalization of Grape Peels By-Product in Common Wheat Pasta" Applied Sciences 11, no. 23: 11129. https://doi.org/10.3390/app112311129
APA StyleUngureanu-Iuga, M., & Mironeasa, S. (2021). Advance on the Capitalization of Grape Peels By-Product in Common Wheat Pasta. Applied Sciences, 11(23), 11129. https://doi.org/10.3390/app112311129