Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence
Abstract
:1. Introduction
2. Market and Trends of Memory Technologies
2.1. Technology Trends of Nonvolatile Memories
2.1.1. Nonvolatile Memory Market
2.1.2. Evolution of Standalone Nonvolatile Memory Technologies
2.1.3. Trends in Embedded Nonvolatile Memory Technologies
- -
- Automotive microcontrollers: these represent the most important market. The main applications include powertrain, body and convenience, safety, connectivity, security, etc.
- -
- Smartcard microcontrollers: these represent a wide range of applications, including ticketing, authentication, government ID, payment, security, etc. This market has recently increased with the rise of the Internet of Things (IoT) and connected objects.
- -
- Consumer and industrial: these also represent a wide range of applications, and include any type of machine or equipment that can use memory.
2.2. General Context and Evolution of Nonvolatile Memories
2.2.1. The Era of Big Data
- -
- First, there is a tremendous volume of generated data. More than two trillion gigabytes (109 bytes) are created each day. Moreover, the evolution of data generation follows an exponential growth, and extrapolations forecast 175 ZB of data in 2025 [1], four times more than what we use today. People are forecasted to carry more than four mobile devices and 75% of the worldwide population will be connected to the network [23].
- -
- Apart from the high volume of data, there is also a large variety of data in various forms. It differs from application to application. Data come from photos, videos, audio recordings, email messages, documents, books, presentations, tweets, etc., and are generally unstructured.
- -
- Finally, new data are coming quickly. The data flow is the velocity vector. Every day 900 million photos are uploaded to Facebook, 500 million tweets are posted on Twitter, 0.4 million hours of video are uploaded to YouTube, and 3.5 billion searches are performed in Google [25]. On a large scale and considering all the contributions, data traffic was expected to grow by a factor of 1455 from 2018 to 2020, following an exponential evolution, as reported by IBS [26]. In particular, video is expected to maintain a growth rate of 70–80% every year for the next decade [26].
2.2.2. Exponential Increase in Required Energy
2.2.3. Limitations of Computing Systems
2.2.4. Development of New Computing Systems
- -
- CPU: they are fully programmable and versatile (can execute any function). There is a clear separation between logic and memory.
- -
- GPU: there is a shared memory architecture with thousands of cores; they operate with high parallel workload.
- -
- Near-memory processing: this system aims to supply high performance and high-density memories as close as possible to the processing units. They are dedicated to data-intensive computing (AI, graph processing, and optimization processing). They combine local and shared memory. They are used for cloud and edge devices.
- -
- In-memory processing: in this system, computing and memory are collocated, which eliminates the von Neumann bottleneck. Major changes in both memory and computing units must be achieved in order to couple data processing and storage. In-memory processing is used for vector processing (AI with limited model size) and is mostly used for edge devices.
- -
- Neuromorphic dynamical systems: they are brain inspired and merge logic and memory. They are used for AI or autonomous systems.
3. Overview of Emerging Memory Technologies
3.1. Emerging Memory Technologies
3.1.1. Filamentary Memory
3.1.2. Phase Change Memory
3.1.3. Magnetic Memory
3.1.4. Ferroelectric Memory
- -
- Ferroelectric FET (FeFET): the ferroelectric material is embedded in the gate stack of a transistor. The nonvolatile polarization of the material acts as a remnant control gate and leads to a threshold voltage shift of the characteristics. This concept offers ultra-low power but is a three terminal device and can thus hardly be envisaged for high-density applications. Moreover, the effect vanishes for thin layers, making the concept hardly scalable. Finally, the degradation of the interface layer between the ferroelectric and the semiconductor channel limits endurance, in particular, due to trapped charge that affects the conduction of the FET below the ferroelectric [92]. For all of these reasons FeFET are targeting Flash or EEPROM rather than DRAM replacement. In particular, it is now seen as an alternative to Flash for ultra-low power applications [91], due to its 10 fJ/bit consumption and five-nanosecond programming speed. FeFET based eNVM solutions were integrated into leading edge technologies: GlobalFoundries FeFET technology was embedded into the 28 nm gate first HKMG low power CMOS platform, showing 6δ distribution, reasonable endurance, and stable data retention [95]. GF also demonstrated a 22 nm node on FDSOI CMOS technology [96].
- -
- Capacitor based ferroelectric RAM (FeRAM): in this case, the cell resembles a DRAM with the capacitor dielectric replaced by the ferroelectric. Recent reports verified antiferroelectric properties for pure ZrO2 dielectrics used in DRAM stacks. By employing electrodes with different work function values, a built-in bias is introduced within the anti-ferroelectric stack, thus creating two stable nonvolatile states [97]. It demonstrated 1010 endurance and 10 ns speed combined with 100 °C retention, making this concept very promising for a dense (6 F²) and new class of nonvolatile DRAM. In FeRAM, reading is destructive as it is performed by switching the ferroelectric into a specific direction and measuring the contrast between a switching and a nonswitching event. Thus, programming is required after each reading operation. In terms of FeRAM reliability challenges, trapped charges at the ferroelectric-electrode interface have to be controlled to improve retention (requiring careful interface engineering), while dielectric breakdown induced by high coercive film has to be prevented to insure high endurance [92].
- -
- Ferroelectric tunneling junctions (FTJ): in this case, the memory is a two terminal device. In the FTJ, a very thin ferroelectric film is used that allows tunneling and the tunneling current is modulated by the polarization of the ferroelectric. A critical issue for this concept (which is more prospective than the previous ones) is the low read current.
3.1.5. Emerging Memory Benchmark
4. New Systems with New Memories
4.1. Evolution of Von Neumann Computing Systems
- -
- It can be used in the storage memory area, either as a replacement of current flash technology, or, at least in the short term as an intermediate step between the main memory and the flash or disks: storage class memories (SCM); in this case, the memory will be interfaced via an I/O-like interface, such as SATA, Ethernet, PCIe, or another interface that could emerge, and the transfer of data with the main memory could be managed by the OS (operating system) of the chip as it is today for storage memory. The storage memory market being essentially cost-driven, it is likely that RRAM will only replace the now well-established flash technology when it is cost-competitive; as flash density continues to increase due to monolithic 3D integration, this will take time. In the meantime, the emerging memory could be used as an intermediate step between flash and the main memory, as for instance an ultra-fast SSD used to store data with frequent access. The large difference in latency is likely to make acceptable a higher cost. Currently, the gap in latency between the main memory, which is in the order of 30–50 ns and the one of flash-based storage, which is about 100 µs (much more in writing) is vast, and having a technology enabling microsecond scale latencies would undoubtedly be an improvement for data centric applications. For these reasons, 1 µs latency and 106 cycle high density RRAM and PCRAM (possibly in vertical architectures) could be two strong candidates for this role.
- -
- It can be used in the main memory area, either as a DRAM companion chip, located on the same memory bus, or as a replacement of the DRAM. Inserting the emerging memory on the main memory bus, alongside DRAM components, will present significant system benefits. It will improve data integrity management; data can be quickly secured locally, on a word-by-word basis, instead of using current cumbersome journaling or check-pointing schemes to protect data from events such as a loss of power supply. This can significantly reduce data traffic in a data center, as it is estimated that data integrity management can represent up to 80% of the file system usage in PetaFlop data centers. As the emerging memory should become more dense and less expensive than DRAM, it will enable much greater capacity than main memories; this is especially important for big data applications, where storing large multidimensional tables in the main memory enables a tremendous performance advantage, because these tables often need to be accessed in a different order than the way it has been stored in the storage memory, which can only be accessed sequentially. It will also simplify atomic operations in transactional databases, as RRAM are byte addressable and nonvolatile. They propose a much more efficient solution than current NVDIMMs composed of a mix of DRAM and flashes powered by a bulky supercapacitor during the data transfer from DRAM to Flash when the main power supply is lost. For these reasons, according to the specifications, fast (~100 ns) and high endurance (~109 cycles) RRAM and PCRAM could succeed.
- -
- It can also be used as a last-level cache replacement or complement; it is unlikely that memory technology could become fast enough to be used as a first-level cache. In this case, the cache capacity could be made much higher, diminishing the external bandwidth requirements. Here, the most stringent requirements would be speed (<30 ns) and endurance (>1016). We cannot rely on wear-leveling in this case as the cache capacity would not be sufficient in regard to its bandwidth, each bit being written frequently. A high endurance of 1016 cycles is likely to reserve this application for STT-MRAM. FeRAM could be placed between an SCM memory (memory type) and the DRAM due to its high endurance. Finally, the only technology that exhibits performances close to SRAM is the SOT-MRAM. As far as cost and power consumption are concerned, the reference there is embedded DRAM (eDRAM); the RRAM has to be cheaper and less consuming than eDRAM to be competitive.
4.2. Emerging Memories for Non Von Neumann Systems
4.2.1. Novel Functions
4.2.2. In/Near Memory Computing
4.2.3. Neuromorphic Architectures
- -
- Digital neural network
- -
- Analog deep learning accelerator
- -
- Spiking brain inspired neural network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishimaru, K. Future of Non-Volatile Memory—From Storage to Computing. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 1.3.1–1.3.6. [Google Scholar] [CrossRef]
- Data Centres of the World Will Consume 1/5 of Earth’s Power by 2025. Available online: https://data-economy.com/data-centres-world-will-consume-1-5-earths-power-2025/ (accessed on 10 December 2020).
- Masuoka, F.; Asano, M.; Iwahashi, H.; Komuro, T.; Tanaka, S. A new flash E2PROM cell using triple polysilicon technology. In Proceedings of the 1984 International Electron Devices Meeting, San Francisco, CA, USA, 9–12 December 1984; pp. 464–467. [Google Scholar] [CrossRef]
- Available online: https://spectrum.ieee.org/chip-hall-of-fame-toshiba-nand-flash-memory (accessed on 10 December 2020).
- Ogura, T. Flash Memory. In CMOS Processors and Memories. Analog Circuits and Signal Processing; Iniewski, K., Ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Cho, T.; Lee, Y.T.; Kim, E.C.; Lee, J.W.; Choi, S.; Lee, S.; Kim, D.H.; Han, W.G.; Lim, Y.H.; Lee, D.J.; et al. A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-Mb single-level modes. IEEE J. Solid-State Circuits 2001, 36, 1700–1706. [Google Scholar] [CrossRef]
- Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; Katsumata, R.; Kito, M.; Fukuzumi, Y.; Sato, M.; Nagata, Y.; Matsuoka, Y.; et al. Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory. In Proceedings of the 2007 IEEE Symposium on VLSI Technology, Kyoto, Japan, 12–14 June 2007; pp. 14–15. [Google Scholar] [CrossRef]
- Available online: https://www.renesas.com/us/en/about/press-room/renesas-electronics-develops-industrys-first-28nm-embedded-flash-memory-technology-microcontrollers (accessed on 10 December 2020).
- Available online: https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html (accessed on 10 December 2020).
- Available online: https://www.research.ibm.com/articles/brain-chip.shtml (accessed on 10 December 2020).
- Cappelletti, P. Non volatile memory evolution and revolution. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 10.1.1–10.1.4. [Google Scholar] [CrossRef]
- Aritome, S. Nand Flash Memory Devices. In NAND Flash Memory Technologies; Wiley: Hoboken, NJ, USA, 2015; pp. 37–92. ISBN 9781119132639. [Google Scholar] [CrossRef]
- Whitepaper: Semiconductor Industry from 2015 to 2025; International Business Strategies (IBS), Inc.: Los Gatos, CA, USA, 2019.
- Hwang, C. Nanotechnology enables a new memory growth model. Proc. IEEE 2003, 91, 1765–1771. [Google Scholar] [CrossRef]
- Aritome, S. NAND Flash Memory Revolution. In Proceedings of the 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 15–18 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Fukuzumi, Y.; Katsumata, R.; Kito, M.; Kido, M.; Sato, M.; Tanaka, H.; Nagata, Y.; Matsuoka, Y.; Iwata, Y.; Aochi, H.; et al. Optimal Integration and Characteristics of Vertical Array Devices for Ultra-High Density, Bit-Cost Scalable Flash Memory. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 449–452. [Google Scholar] [CrossRef]
- Shibata, N.; Kanda, K.; Shimizu, T.; Nakai, J.; Nagao, O.; Kobayashi, N.; Miakashi, M.; Nagadomi, Y.; Nakano, T.; Kawabe, T.; et al. 13.1 A 1.33Tb 4-bit/Cell 3D-Flash Memory on a 96-Word-Line-Layer Technology. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 210–212. [Google Scholar] [CrossRef]
- Kalavade, P. 4 bits/cell 96 Layer Floating Gate 3D NAND with CMOS under Array Technology and SSDs. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Inaba, S. 3D Flash Memory for Data-Intensive Applications. In Proceedings of the 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 13–16 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Nishi, Y.; Magyari-Kope, B. (Eds.) Chapter 4: Improving embedded Flash memory technology. In Advances in Non-volatile Memory and Storage Technology; Woodhead Publishing: Sawston, UK, 2014; p. 139. [Google Scholar]
- Strenz, R. Review and Outlook on Embedded NVM Technologies—From Evolution to Revolution. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, H. Challenges in Automotive Memory Solutions. In Proceedings of the 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 13–16 May 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Reinsel, D.; Gantz, J.; Rydning, J. IDC White Paper, Data Age 2025; Seagate, 2017; Available online: https://www.import.io/wp-content/uploads/2017/04/Seagate-WP-DataAge2025-March-2017.pdf (accessed on 10 December 2020).
- Reinsel, D.; Gantz, J.; Rydning, J. IDC White Paper, Data Age 2025. In The Digitalization of the World, from Edge to Core; #US44413318; November 2018; Available online: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf (accessed on 10 December 2020).
- Available online: https://www.whishworks.com/blog/big-data/understanding-the-3-vs-of-big-data-volume-velocity-and-variety (accessed on 10 December 2020).
- Impact of Ai on Electronics and Semiconductor Industries; International Business Strategies (IBS), Inc.: Los Gatos, CA, USA, 2020.
- The Zettabyte Era: Trends and Analysis. Cisco. Available online: http://www.hit.bme.hu/~jakab/edu/HTI18/Litr/Cisco_The_Zettabyte_Era_2017June__vni-hyperconnectivity-wp.pdf (accessed on 10 December 2020).
- 4E Electronics Devices and Network Annex (EDNA). Total Energy Model for Connected Devices. June 2019. Available online: https://edna.iea-4e.org/library (accessed on 10 December 2020).
- Andrae, A. Total Consumer Power Consumption Forecast. Nord. Digit. Bus. Summit. 2017. Available online: https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast (accessed on 10 December 2020).
- Available online: www.iea-4e.org (accessed on 10 December 2020).
- Kau, D.; Tang, S.; Karpov, I.V.; Dodge, R.; Klehn, B.; Kalb, J.A.; Strand, J.; Diaz, A.; Leung, N.; Wu, J.; et al. A stackable cross point Phase Change Memory. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Hady, F. Converging Memory and Storage. In Proceedings of the 2019 SNIA’s Persistent Memory Summit, Santa Clara, CA, USA, 24 January 2019; Available online: https://www.snia.org/sites/default/files/PM-Summit/2019/presentations/01-PMSummit19-Hady-Keynote.pdf (accessed on 10 December 2020).
- Handy, J.; Coughlin, T. The Long and Winding Road to Persistent Memories. In Proceedings of the 2018 SNIA’s Storage Developer Conference, Santa Clara, CA, USA, 24–27 September 2018; Available online: https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Handy_J_Coughlin_T_The_Long_&_Winding_Road_to_Persistent_Memories.pdf (accessed on 10 December 2020).
- Foong, A.; Hady, F. Storage as Fast as Rest of the System. In Proceedings of the 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 15–18 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Wulf, W.A.; McKee, S. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995, 23, 20–24. [Google Scholar] [CrossRef]
- Mutlu, O. Processing Data Where It Makes Sense in Modern Computing Systems: Enabling In-Memory Computation. In Proceedings of the Shortcourse of 2019 International Memory Workshop, Monterey, CA, USA, 12–15 May 2019. [Google Scholar]
- Kulkarni, J.P. Circuit Technologies for Efficient In-Memory Computing. In Proceedings of the Shortcourse of 2019 International Memory Workshop, Monterey, CA, USA, 12–15 May 2019. [Google Scholar]
- Raychowdhury, A. Towards Memory-centric Autonomous Systems: A Technology and Device Perspective. In Proceedings of the IEDM 2019 Short Course 2: Technologies for Memory-Centric Computing, San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Boroumand, A.; Ghose, S.; Kim, Y.; Ausavarungnirun, R.; Shiu, E.; Thakur, R.; Kim, D.; Kuusela, A.; Knies, A.; Ranganathan, P.; et al. Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. In Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, 24–28 March 2018. [Google Scholar]
- Venkataramani, S.; Ranjan, A.; Banerjee, S.; Das, D.; Avancha, S.; Jagannathan, A.; Durg, A.; Nagaraj, D.; Kaul, B.; Dubay, P.; et al. SCALEDEEP: A scalable compute architecture for learning and evaluating deep networks. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 13–26. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Bashara, N.M. The reversible voltage-induced initial resistance in the negative resistance sandwich structure. IEEE Trans. Electron Devices 1964, 11, 243–244. [Google Scholar] [CrossRef]
- Hickmott, T.W. Low-Frequency Negative Resistance in Thin Anodic Oxide Films. J. Appl. Phys. 1962, 33, 2669–2682. [Google Scholar] [CrossRef]
- Baek, I.G.; Lee, M.S.; Seo, S.; Lee, M.J.; Seo, D.H.; Suh, D.-S.; Park, J.C.; Park, S.O.; Kim, H.S.; Yoo, I.K.; et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Technical Digest. In Proceedings of the IEEE International Electron Devices Meeting 2004, San Francisco, CA, USA, 13–15 December 2004; pp. 587–590. [Google Scholar] [CrossRef]
- Grenouillet, L.; Castellani, N.; Persico, A.; Meli, V.; Martin, S.; Billoint, O.; Segaud, R.; Bernasconi, S.; Pellissier, C.; Jahan, C.; et al. 16kbit 1T1R OxRAM arrays embedded in 28nm FDSOI technology demonstrating low BER, high endurance, and compatibility with core logic transistors. In Proceedings of the 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 16–19 May 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Lopez, J.M.; Castellani, N.; Grenouillet, L.; Reganaz, L.; Navarro, G.; Bernard, M.; Carabasse, C.; Magis, T.; Deleruyelle, D.; Bocquet, M.; et al. Ge-Se-Sb-N-based OTS scaling perspectives for high-density 1 S1R crossbar arrays. In Proceedings of the 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 16–19 May 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Gao, B.; Wu, W.; Dai, L.; Li, X.; Qian, H. Ultrafast RESET Analysis of HfOx-Based RRAM by Sub-Nanosecond Pulses. Adv. Electron. Mater. 2017, 3, 1700263. [Google Scholar] [CrossRef]
- Golonzka, O.; Arslan, U.; Bai, P.; Bohr, M.; Baykan, O.; Chang, Y.; Chaudhari, A.; Chen, A.; Clarke, J.; Connor, C.; et al. Non-Volatile RRAM Embedded into 22FFL FinFET Technology. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T230–T231. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Himeno, A.; Yasuhara, R.; Boullart, W.; Vecchio, E.; Vandeweyer, T.; Witters, T.; Crotti, D.; Jurczak, M.; Fujii, S.; et al. Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T14–T15. [Google Scholar] [CrossRef]
- Hirtzlin, T.; Bocquet, M.; Ernoult, M.; Klein, J.O.; Nowak, E.; Vianello, E.; Portal, J.-M.; Querlioz, D. Hybrid Analog-Digital Learning with Differential RRAM Synapses. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 22.6.1–22.6.4. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Hayakawa, Y.; Wei, Z.; Muraoka, S.; Kawashima, K.; Kotani, H.; Kouno, K.; Nakamura, M.; Du, G.A.; Chen, J.F.; et al. ReRAM Technologies for Embedded Memory and Further Applications. In Proceedings of the 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 13–16 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Guy, J.; Molas, G.; Cagli, C.; Bernard, M.; Roule, A.; Carabasse, C.; Toffoli, A.; Clermidy, F.; de Salvo, B.; Perniola, L. Guidance to reliability improvement in CBRAM using advanced KMC modelling. In Proceedings of the 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2–6 April 2017; pp. PM-2.1–PM-2.5. [Google Scholar] [CrossRef]
- Ueki, M.; Takeuchi, K.; Yamamoto, T.; Tanabe, A.; Ikarashi, N.; Saitoh, M.; Nagumo, T.; Sunamura, H.; Narihiro, M.; Uejima, K.; et al. Low-power embedded ReRAM technology for IoT applications. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T108–T109. [Google Scholar] [CrossRef]
- Govoreanu, B.; Kar, G.S.; Chen, Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; Radu, I.P.; Goux, L.; Clima, S.; Degraeve, R.; et al. 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 31.6.1–31.6.4. [Google Scholar] [CrossRef]
- Guy, J.; Molas, G.; Blaise, P.; Carabasse, C.; Bernard, M.; Roule, A.; le Carval, G.; Sousa, V.; Grampeix, H.; Delaye, V.; et al. Experimental and theoretical understanding of Forming, SET and RESET operations in Conductive Bridge RAM (CBRAM) for memory stack optimization. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 6.5.1–6.5.4. [Google Scholar] [CrossRef]
- Jain, P.; Arslan, U.; Sekhar, M.; Lin, B.C.; Wei, L.; Sahu, T.; Alzate-vinasco, J.; Vangapaty, A.; Meterelliyoz, M.; Strutt, N.; et al. 13.2 A 3.6 Mb 10.1 Mb/mm2 Embedded Non-Volatile ReRAM Macro in 22 nm FinFET Technology with Adaptive Forming/Set/Reset Schemes Yielding Down to 0.5 V with Sensing Time of 5 ns at 0.7 V. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 212–214. [Google Scholar] [CrossRef]
- Chou, C.; Lin, Z.; Lai, C.; Su, C.; Tseng, P.; Chen, W.; Tsai, W.; Chu, W.; Ong, T.; Chuang, H.; et al. A 22nm 96KX144 RRAM Macro with a Self-Tracking Reference and a Low Ripple Charge Pump to Achieve a Configurable Read Window and a Wide Operating Voltage Range. In Proceedings of the 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Sandrini, J.; Grenouillet, L.; Meli, V.; Castellani, N.; Hammad, I.; Bernasconi, S.; Aussenac, F.; van Duijn, S.; Audoit, G.; Barlas, M.; et al. OxRAM for embedded solutions on advanced node: Scaling perspectives considering statistical reliability and design constraints. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 30.5.1–30.5.4. [Google Scholar] [CrossRef]
- Lopez, J.M.; Robayo, D.A.; Grenouillet, L.; Carabasse, C.; Navarro, G.; Fournel, R.; Sabbione, C.; Bernard, M.; Billoint, O.; Cagli, C.; et al. Optimization of RRAM and OTS selector for advanced low voltage CMOS compatibility. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Robayo, D.A.; Sassine, G.; Lopez, J.M.; Grenouillet, L.; Verdy, A.; Navarro, G.; Bernard, M.; Esmanhotto, E.; Carabasse, C.; Deleruyelle, D.; et al. Reliability and Variability of 1S1R OxRAM-OTS for High Density Crossbar Integration. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 35.3.1–35.3.4. [Google Scholar] [CrossRef]
- Molas, G.; Robayo, D.A.; Lopez, J.M.; Grenouillet, L.; Carabasse, C.; Navarro, G.; Sabbione, C.; Bernard, M.; Cagli, C.; Castellani, N.; et al. Crosspoint Memory Arrays: Principle, Strengths and Challenges. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Padovani, A.; Larcher, L.; Pirrotta, O.; Vandelli, L.; Bersuker, G. Microscopic Modeling of HfOx RRAM Operations: From Forming to Switching. IEEE Trans. Electron Devices 2015, 62, 1998–2006. [Google Scholar] [CrossRef]
- Guy, J.; Molas, G.; Blaise, P.; Bernard, M.; Roule, A.; Le Carval, G.; Delaye, V.; Toffoli, A.; Ghibaudo, G.; Clermidy, F.; et al. Investigation of Forming, SET, and Data Retention of Conductive-Bridge Random-Access Memory for Stack Optimization. IEEE Trans. Electron Devices 2015, 62, 3482–3489. [Google Scholar] [CrossRef]
- Sassine, G.; Nail, C.; Blaise, P.; Sklenard, B.; Bernard, M.; Gassilloud, R.; Marty, A.; Veillerot, M.; Vallée, C.; Nowak, E.; et al. Hybrid-RRAM Towards Next Generation of Non-volatile Memory: Coupling of Oxygen Vacancies and Metal Ions. Adv. Electron. Mater. 2018, 5, 1800658. [Google Scholar] [CrossRef]
- Bricalli, A.; Ambrosi, E.; Laudato, M.; Maestro, M.; Rodriguez, R.; Ielmini, D. SiOx-based resistive switching memory (RRAM) for crossbar storage/select elements with high on/off ratio. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 4.3.1–4.3.4. [Google Scholar] [CrossRef]
- Gonzales, N.; Dinh, J.; Lewis, D.; Gilbert, N.; Pedersen, B.; Kamalanathan, D.; Jameson, J.R.; Hollmer, S. An Ultra Low-Power Non-Volatile Memory Design Enabled by Subquantum Conductive-Bridge RAM. In Proceedings of the 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 15–18 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Sassine, G.; Cagli, C.; Nodin, J.; Molas, G.; Nowak, E. Novel Computing Method for Short Programming Time and Low Energy Consumption in HfO2 Based RRAM Arrays. IEEE J. Electron Devices Soc. 2018, 6, 696–702. [Google Scholar] [CrossRef]
- Molas, G.; Sassine, G.; Nail, C.; Robayo, D.A.; Nodin, J.; Cagli, C.; Coignus, J.; Blaise, P.; Nowak, E. (Invited) Resistive Memories (RRAM) Variability: Challenges and Solutions. ECS Trans. 2018, 86, 35. [Google Scholar] [CrossRef]
- Sills, S.; Yasuda, S.; Calderoni, A.; Cardon, C.; Strand, J.; Aratani, K.; Ramaswamy, N. Challenges for high-density 16Gb ReRAM with 27nm technology. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T106–T107. [Google Scholar] [CrossRef]
- Ohba, K.; Yasuda, S.; Mizuguchi, T.; Sei, H.; Tsushima, T.; Shimuta, M.; Shiimoto, T.; Yamamoto, T.; Sone, T.; Nonoguchi, S. Cross Point Cu-ReRAM with BC-Doped Selector. In Proceedings of the 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 13–16 May 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Available online: https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160809_Keynote4_WD_Sivaram.pdf (accessed on 10 December 2020).
- Navarro, G.; Verdy, A.; Castellani, N.; Bourgeois, G.; Sousa, V.; Molas, G.; Bernard, M.; Sabbione, C.; Noé, P.; Garrione, J. Innovative PCM+OTS device with high sub-threshold non-linearity for non-switching reading operations and higher endurance performance. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T94–T95. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Wu, J.Y.; Cheek, R.; Raoux, S.; BrightSky, M.; Garbin, D.; Kim, S.; Hsu, T.H.; Zhu, Y.; Lai, E.K.; et al. A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTe z phase change material. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 31.1.1–31.1.4. [Google Scholar] [CrossRef]
- Navarro, G.; Bourgeois, G.; Kluge, J.; Serra, A.L.; Verdy, A.; Garrione, J.; Cyrille, M.; Bernier, N.; Jannaud, A.; Sabbione, C. Phase-Change Memory: Performance, Roles and Challenges. In Proceedings of the 2018 IEEE International Memory Workshop (IMW), Kyoto Japan, 13–16 May 2018; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Luan, B.; Lam, C. Resistance drift in phase change memory. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 6C.1.1–6C.1.6. [Google Scholar] [CrossRef]
- Elliott, S.R. Electronic mechanism for resistance drift in phase-change memory materials: Link to persistent photoconductivity. J. Phys. D Appl. Phys. 2020, 53, 214002. [Google Scholar] [CrossRef]
- Stanisavljevic, M.; Pozidis, H.; Athmanathan, A.; Papandreou, N.; Mittelholzer, T.; Eleftheriou, E. Demonstration of Reliable Triple-Level-Cell (TLC) Phase-Change Memory. In Proceedings of the 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 15–18 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Kang, M.J.; Park, T.J.; Kwon, Y.W.; Ahn, D.H.; Kang, Y.S.; Jeong, H.; Ahn, S.J.; Song, Y.J.; Kim, B.C.; Nam, S.W.; et al. PRAM cell technology and characterization in 20nm node size. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 3.1.1–3.1.4. [Google Scholar] [CrossRef]
- Close, G.F.; Frey, U.; Morrish, J.; Jordan, R.; Lewis, S.C.; Maffitt, T.; BrightSky, M.J.; Hagleitner, C.; Lam, C.H.; Eleftheriou, E. A 256-Mcell Phase-Change Memory Chip Operating at 2+ Bit/Cell. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 1521–1533. [Google Scholar] [CrossRef]
- Pangal, K. Emerging Memories including Cross-Point: Opportunities and Challenges. In Proceedings of the IEEE IEDM 2017 Shortcourse, San Francisco, CA, USA, 2 December 2018. [Google Scholar]
- Arnaud, F.; Zuliani, P.; Reynard, J.P.; Gandolfo, A.; Disegni, F.; Mattavelli, P.; Gomiero, E.; Samanni, G.; Jahan, C.; Berthelon, R.; et al. Truly Innovative 28nm FDSOI Technology for Automotive Micro-Controller Applications embedding 16MB Phase Change Memory. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 18.4.1–18.4.4. [Google Scholar] [CrossRef]
- Arnaud, F.; Haendler, S.; Clerc, S.; Ranica, R.; Gandolfo, A.; Weber, O. 28 nm FDSOI Platform with Embedded PCM for IoT, ULP, Digital, Analog, Automotive and others Applications. In Proceedings of the ESSCIRC 2019—IEEE 45th European Solid State Circuits Conference (ESSCIRC), Cracow, Poland, 23–26 September 2019; pp. 7–10. [Google Scholar] [CrossRef]
- Tillie, L.; Nowak, E.; Sousa, R.C.; Cyrille, M.-C.; Delaet, B.; Magis, T.; Persico, A.; Langer, J.; Ocker, B.; Prejbeanu, I.-L.; et al. Data retention extraction methodology for perpendicular STT-MRAM. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 27.3.1–27.3.4. [Google Scholar] [CrossRef]
- Gallagher, W.J.; Chien, E.; Chiang, T.; Huang, J.; Shih, M.; Wang, C.Y.; Weng, C.; Chen, S.; Bair, C.; Lee, G.; et al. 22 nm STT-MRAM for Reflow and Automotive Uses with High Yield, Reliability, and Magnetic Immunity and with Performance and Shielding Options. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 2.7.1–2.7.4. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, X.; Xu, P.; Hu, L.; Jung, D.; Kim, W.; Satoh, K.; Yen, B.; Wei, Z.; Wang, L.; et al. STT-MRAM for Embedded Memory Applications. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Lee, K.; Bak, J.H.; Kim, Y.J.; Kim, C.K.; Antonyan, A.; Chang, D.H.; Hwang, S.H.; Lee, G.W.; Ji, N.Y.; Kim, W.J.; et al. 1Gbit High Density Embedded STT-MRAM in 28nm FDSOI Technology. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 2.2.1–2.2.4. [Google Scholar] [CrossRef]
- Naik, V.B.; Lee, K.; Yamane, K.; Chao, R.; Kwon, J.; Thiyagarajah, N.; Chung, N.L.; Jang, S.H.; Behin-Aein, B.; Lim, J.H.; et al. Manufacturable 22 nm FD-SOI Embedded MRAM Technology for Industrial-grade MCU and IOT Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 2.3.1–2.3.4. [Google Scholar] [CrossRef]
- Alzate, J.G.; Arslan, U.; Bai, P.; Brockman, J.; Chen, Y.J.; Das, N.; Fischer, K.; Ghani, T.; Heil, P.; Hentges, P.; et al. 2 MB Array-Level Demonstration of STT-MRAM Process and Performance Towards L4 Cache Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 2.4.1–2.4.4. [Google Scholar] [CrossRef]
- Aggarwal, S.; Almasi, H.; DeHerrera, M.; Hughes, B.; Ikegawa, S.; Janesky, J.; Lee, H.K.; Lu, H.; Mancoff, F.B.; Nage, K.; et al. Demonstration of a Reliable 1 Gb Standalone Spin-Transfer Torque MRAM For Industrial Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 2.1.1–2.1.4. [Google Scholar] [CrossRef]
- Golonzka, O.; Alzate, J.-G.; Arslan, U.; Bohr, M.; Bai, P.; Brockman, J.; Buford, B.; Connor, C.; Das, N.; Doyle, B.; et al. MRAM as Embedded Non-Volatile Memory Solution for 22FFL FinFET Technology. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 18.1.1–18.1.4. [Google Scholar] [CrossRef]
- Wei, L.; Alzate, J.G.; Arslan, U.; Brockman, J.; Das, N.; Fischer, K.; Ghani, T.; Golonzka, O.; Hentges, P.; Jahan, R.; et al. 13.3 A 7Mb STT-MRAM in 22FFL FinFET Technology with 4ns Read Sensing Time at 0.9V Using Write-Verify-Write Scheme and Offset-Cancellation Sensing Technique. In Proceedings of the 2019 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 214–216. [Google Scholar] [CrossRef]
- Grenouillet, L.; Francois, T.; Coignus, J.; Kerdilès, S.; Vaxelaire, N.; Carabasse, C.; Mehmood, F.; Chevalliez, S.; Pellissier, C.; Triozon, F.; et al. Nanosecond Laser Anneal (NLA) for Si-Implanted HfO2 Ferroelectric Memories Integrated in Back-End of Line (BEOL). In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Mulaosmanovic, H.; Lomenzo, P.D.; Schroeder, U.; Slesazeck, S.; Mikolajick, T.; Max, B. Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memories. In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–25 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mikolajick, T.; Schroeder, U.; Lomenzo, P.D.; Breyer, E.T.; Mulaosmanovic, H.; Hoffmann, M.; Mittmann, T.; Mehmood, F.; Max, B.; Slesazeck, S. Next Generation Ferroelectric Memories enabled by Hafnium Oxide. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 15.5.1–15.5.4. [Google Scholar] [CrossRef]
- Grenouillet, L.; Francois, T.; Coignus, J.; Vaxelaire, N.; Carabasse, C.; Triozon, F.; Richter, C.; Schroeder, U.; Nowak, E. Performance assessment of BEOL-integrated HfO2-based ferroelectric capacitors for FeRAM memory arrays. In Proceedings of the 2020 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 13–14 June 2020; pp. 5–6. [Google Scholar] [CrossRef]
- Beyer, S.; Dünkel, S.; Trentzsch, M.; Müller, J.; Hellmich, A.; Utess, D.; Paul, P.; Kleimeier, D.; Pellerin, J.; Müller, S.; et al. FeFET: A versatile CMOS compatible device with game-changing potential. In Proceedings of the 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 17–20 May 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Dünkel, S.; Trentzsch, M.; Richter, R.; Moll, P.; Fuchs, C.; Gehring, O.; Majer, M.; Wittek, S.; Müller, B.; Melde, T.; et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 19.7.1–19.7.4. [Google Scholar] [CrossRef]
- Pesic, M.; Knebel, S.; Hoffmann, M.; Richter, C.; Mikolajick, T.; Schroeder, U. How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 11.6.1–11.6.4. [Google Scholar] [CrossRef]
- Hady, F.T.; Foong, A.; Veal, B.; Williams, D. Platform Storage Performance With 3D XPoint Technology. Proc. IEEE 2017, 105, 1822–1833. [Google Scholar] [CrossRef]
- Carboni, R.; Ielmini, D. Stochastic Memory Devices for Security and Computing. Adv. Electron. Mater. 2019, 5, 1900198. [Google Scholar] [CrossRef] [Green Version]
- Sahay, S.; Kumar, A.; Parmar, V.; Suri, M. OxRAM RNG Circuits Exploiting Multiple Undesirable Nanoscale Phenomena. IEEE Trans. Nanotechnol. 2017, 16, 560–566. [Google Scholar] [CrossRef]
- Piccolboni, G.; Molas, G.; Garbin, D.; Vianello, E.; Cueto, O.; Cagli, C.; Traore, B.; de Salvo, B.; Ghibaudo, G.; Perniola, L. Investigation of Cycle-to-Cycle Variability in HfO2-Based OxRAM. IEEE Electron Device Lett. 2016, 37, 721–723. [Google Scholar] [CrossRef]
- Chen, A. Comprehensive assessment of RRAM-based PUF for hardware security applications. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 10.7.1–10.7.4. [Google Scholar] [CrossRef]
- Perrissin, N.; Gregoire, G.; Lequeux, S.; Tillie, L.; Strelkov, N.; Auffret, S.; Prejbeanu, L.D.B.; Sousa, R.C.; Vila, L.; Dieny, B.; et al. Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: Towards sub-10 nm devices. J. Phys. D Appl. Phys. 2019, 52, 234001. [Google Scholar] [CrossRef]
- Ly, D.R.B.; Noel, J.P.; Giraud, B.; Royer, P.; Esmanhotto, E.; Castellani, N.; Dalgaty, T.; Nodin, J.-F.; Fenouillet-Berange, C.; Nowak, E.; et al. Novel 1T2R1T RRAM-based Ternary Content Addressable Memory for Large Scale Pattern Recognition. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 35.5.1–35.5.4. [Google Scholar] [CrossRef]
- Tsai, H.; Ambrogio, S.; Narayanan, P.; Shelby, R.M.; Burr, G.W. Recent progress in analog memory-based accelerators for deep learning. J. Phys. D Appl. Phys. 2018, 51, 283001. [Google Scholar] [CrossRef]
- Available online: https://www.ibm.com/blogs/research/2016/12/the-brains-architecture-efficiency-on-a-chip/ (accessed on 10 December 2020).
- Ielmini, D.; Wong, H.-S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Wu, T.F.; Le, B.Q.; Radway, R.; Bartolo, A.; Hwang, W.; Jeong, S.; Li, H.; Tandon, P.; Vianello, E.; Vivet, P.; et al. 14.3 A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques. In Proceedings of the 2019 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 226–228. [Google Scholar] [CrossRef]
- Sheng, X.; Graves, C.E.; Kumar, S.; Li, X.; Buchanan, B.; Zheng, L.; Lam, S.; Li, C.; Strachan, J.P. Low-Conductance and Multilevel CMOS-Integrated Nanoscale Oxide Memristors. Adv. Electron. Mater. 2019, 5, 1800876. [Google Scholar] [CrossRef]
- Strukov, D.; Indiveri, G.; Grollier, J.; Fusi, S. “Building brain-inspired computing. Nat. Commun. 2019, 10, 4838. [Google Scholar] [CrossRef] [Green Version]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Joshi, V.; le Gallo, M.; Haefeli, S.; Boybat, I.; Nandakumar, S.R.; Piveteau, C.; Dazzi, M.; Rajendran, B.; Sebastian, A.; Eleftheriou, E. Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 2020, 11, 2473. [Google Scholar] [CrossRef]
- Ambrogio, S.; Narayanan, P.; Tsai, H.; Shelby, R.M.; Boybat, I.; di Nolfo, C.; Sidler, S.; Giordano, M.; Bodini, M.; Farinha, N.C.P.; et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 2018, 558, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Hirtzlin, T.; Bocquet, M.; Penkovsky, B.; Klein, J.; Nowak, E.; Vianello, E.; Portal, J.; Querlioz, D. Digital Biologically Plausible Implementation of Binarized Neural Networks with Differential Halfnium Oxide Resistive Memory Arrays. Front. Neurosci. 2020, 13, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocquet, M.; Hirztlin, T.; Klein, J.-O.; Nowak, E.; Vianello, E.; Portal, J.-M.; Querlioz, D. In-Memory and Error-Immune Differential RRAM Implementation of Binarized Deep Neural Networks. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar] [CrossRef] [Green Version]
- Mikawa, T.; Yasuhara, R.; Katayama, K.; Kouno, K.; Ono, T.; Mochida, R.; Hayata, Y.; Nakayama, M.; Suwa, H.; Gohou, Y.; et al. Neuromorphic computing based on Analog ReRAM as low power solution for edge application. In Proceedings of the 2019 IEEE 11th International Memory Workshop (IMW), Monterey, CA, USA, 12–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Hsieh, E.R.; Giordano, M.; Hodson, B.; Levy, A.; Osekowsky, S.K.; Radway, R.M.; Shih, Y.C.; Wan, W.; Wu, T.F.; Zheng, X.; et al. High-Density Multiple Bits-per-Cell 1T4R RRAM Array with Gradual SET/RESET and its Effectiveness for Deep Learning. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 35.6.1–35.6.4. [Google Scholar] [CrossRef]
- Milo, V.; Zambelli, C.; Olivo, P.; Pérez, E.; Mahadevaiah, M.K.; Ossorio, O.G.; Wenger, C.; Ielmini, D. Multilevel HfO2-based RRAM devices for low-power neuromorphic networks. APL Mater. 2019, 7, 081120. [Google Scholar] [CrossRef] [Green Version]
- Esmanhotto, E.; Brunet, L.; Castellani, N.; Bonnet, D.; Dalgaty, T.; Grenouillet, L.; Ly, D.R.B.; Cagli, C.; Vizioz, C.; Allouti, N.; et al. High-Density 3D Monolithically Integrated Multiple 1T1R Multi-Level-Cell for Neural Networks. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 36.5.1–36.5.4. [Google Scholar] [CrossRef]
- Maass, W. Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Netw. 1997, 10, 1659–1671. [Google Scholar] [CrossRef]
- Ielmini, D.; Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 2020, 31, 092001. [Google Scholar] [CrossRef] [PubMed]
- Valentian, A.; Rummens, F.; Vianello, E.; Mesquida, T.; Lecat-Mathieu de Boissac, C.; Bichler, O.; Reita, C. Fully Integrated Spiking Neural Network with Analog Neurons and RRAM Synapses. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 14.3.1–14.3.4. [Google Scholar] [CrossRef]
- Regev, A.; Bricalli, A.; Piccolboni, G.; Valentian, A.; Mesquida, T.; Molas, G.; Nodin, J. Fully-Integrated Spiking Neural Network Using SiOx-Based RRAM as Synaptic Device. In Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy, 31 August–2 September 2020; pp. 145–148. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molas, G.; Nowak, E. Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence. Appl. Sci. 2021, 11, 11254. https://doi.org/10.3390/app112311254
Molas G, Nowak E. Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence. Applied Sciences. 2021; 11(23):11254. https://doi.org/10.3390/app112311254
Chicago/Turabian StyleMolas, Gabriel, and Etienne Nowak. 2021. "Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence" Applied Sciences 11, no. 23: 11254. https://doi.org/10.3390/app112311254
APA StyleMolas, G., & Nowak, E. (2021). Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence. Applied Sciences, 11(23), 11254. https://doi.org/10.3390/app112311254