An Innovative Steel Damper with a Flexural and Shear–Flexural Mechanism to Enhance the CBF System Behavior: An Experimental and Numerical Study
Abstract
:1. Introduction
2. The Proposed Damper
2.1. Damper Geometry
2.2. Predicting the Behavior of the Damper
3. Method of Study
4. Experimental Study
4.1. Experimental Specimens
4.2. Material Properties
4.3. Setup and Loading
5. Experimental Results
5.1. Condition of Damper Members during Loading
5.2. Comparing the Behavior of the Specimens
6. Numerical Study
6.1. Boundary Condition and Materials
6.2. FE Modeling
6.3. Finite Element Model Properties
7. Discussion and Results of FE Simulation
7.1. Categories of the Damper Behavior
7.2. Hysterias Curve of FE Models
7.3. Comparing the Types of Systems
8. Accuracy of the Proposed Relations
9. Conclusions
- -
- Experimental results indicated that M_P had less strength and energy_dissipating capability than other models, as also confirmed by FE results in all types of main plate buckling.
- -
- Experimental and FE results indicated that connecting the cross plate to the web plate improved the strength and stiffness but reduced the ultimate displacement. Comparing the results of the specimen with (not connected to web plate) and without cross-flexural plates confirmed that the cross plate increased the ultimate strength by 2.65 and reduced the stiffness by 16%. The reduction in stiffness was due to the length of the web plate having a greater effect on stiffness than thickness.
- -
- Connecting the cross plate to the web plate improved the ultimate strength and stuffiness by 84% and 3.9, respectively.
- -
- In the main plate without a cross plate and with an unconnected cross plate, the yielding started at the bottom and top of the plate, whereas it started at the middle of the plate when the cross plate was connected to the main plate. For slender plates (elastic buckling, ) without a cross plate, the dampers did not experience adequate nonlinear zones. Thus, dampers with without cross flexural plates are not appropriate for use as seismic dampers.
- -
- Upon adding the cross plate to the damper, the ratio of the normalized shear strength to plastic shear strength of the main plate exceeded 1. Hence, the cross plate not only changed the main plate behavior from flexural to shear but also contributed to resisting the applied loading. Therefore, the assumption in Section 2.2 was confirmed.
- -
- For a plate with plastic buckling (), the cross_flexural plate increased the strength and stiffness by factors of 2 and 1.06, respectively, revealing a negligible effect on the stiffness for . For a plate with elastic buckling (), the strength and stiffness were increased by 1.2 and 2.64, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, A.D.; Swatosh, M.A.; Ballard, R.; Sloat, D.; Johnson, M.M.; Roeder, C.W.; Lehman, D.E.; Berman, J.W. Development and evaluation of seismic retrofit alternatives for older concentrically braced frames. J. Struct. Eng. 2017, 143, 04016232. [Google Scholar] [CrossRef]
- Roeder, C.W.; Sen, A.D.; Terpstra, C.; Ibarra, S.M.; Liu, R.; Lehman, D.E.; Berman, J.W. Effect of beam yielding on chevron braced frames. J. Constr. Steel Res. 2019, 159, 428–441. [Google Scholar] [CrossRef]
- Sen, A.D.; Sloat, D.; Ballard, R.; Johnson, M.M.; Roeder, C.W.; Lehman, D.E.; Berman, J.W. Experimental evaluation of the seismic vulnerability of braces and connections in older concentrically braced frames. J. Struct. Eng. 2016, 142, 04016052. [Google Scholar] [CrossRef]
- FEMA, 351. Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings; FEMA: Washington, DC, USA, 2000. [Google Scholar]
- Sabelli, R.; Mahin, S.; Chang, C. Seismic demands on steel braced frame buildings with buckling-restrained braces. Engineering Structures 2003, 25, 655–666. [Google Scholar] [CrossRef]
- Skalomenos, K.A.; Inamasu, H.; Shimada, H.; Nakashima, M. Development of a steel brace with intentional eccentricity and experimental validation. J. Struct. Eng. 2017, 143, 04017072. [Google Scholar] [CrossRef]
- Inamasu, H.; Skalomenos, K.A.; Hsiao, P.C.; Hayashi, K.; Kurata, M.; Nakashima, M. Gusset plate connections for naturally buckling braces. J. Struct. Eng. 2017, 143, 04017065. [Google Scholar] [CrossRef]
- Housner, G.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T. Structural control: Past, present, and future. J. Eng. Mech. 1997, 123, 897–971. [Google Scholar] [CrossRef]
- Soong, T.T.; Dargush, G.F. Passive Energy Dissipation Systems in Structural Engineering; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Symans, M.D.; Charney, F.A.; Whittaker, A.S.; Constantinou, M.C.; Kircher, C.A.; Johnson, M.W.; McNamara, R.J. Energy dissipation systems for seismic applications: Current practice and recent developments. J. Struct. Eng. 2008, 134, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Hanson, R.D. Influence of ADAS element parameters on building seismic response. J. Struct. Eng. 1992, 118, 1903–1918. [Google Scholar] [CrossRef]
- Khazaei, M. Investigation on dynamics nonlinear analysis of steel frames with steel dampers. Procedia Eng. 2013, 54, 401–412. [Google Scholar] [CrossRef] [Green Version]
- TahamouliRoudsari, M.; Eslamimanesh, M.B.; Entezari, A.R.; Noori, O.; Torkaman, M. Experimental assessment of retrofitting RC moment resisting frames with ADAS and TADAS yielding dampers. Structures 2018, 14, 75–87. [Google Scholar] [CrossRef]
- Tsai, K.C.; Chen, H.W.; Hong, C.P.; Su, Y.F. Design of steel triangular plate energy absorbers for seismic-resistant construction. Earthq. Spectra 1993, 9, 505–528. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Abdi, M.G. Evaluating response modification factors of TADAS frames. J. Constr. Steel Res. 2012, 71, 162–170. [Google Scholar] [CrossRef]
- Gray, M.G.; Christopoulos, C.; Packer, J.A.; De Oliveira, C. A new brace option for ductile braced frames. Mod. Steel Constr. 2012, 52, 40–43. [Google Scholar]
- Gray, M.G.; Christopoulos, C.; Packer, J.A. Cast steel yielding brace system for concentrically braced frames: Concept development and experimental validations. J. Struct. Eng. 2014, 140, 04013095. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.G.; Christopoulos, C.; Packer, J.A. Design and full-scale testing of a cast steel yielding brace system in a braced frame. J. Struct. Eng. 2017, 143, 04016210. [Google Scholar] [CrossRef]
- Watanabe, A.; Hitomi, Y.; Saeki, E.; Wada, A.; Fujimoto, M. Properties of brace encased in buckling-restraining concrete and steel tube. In Proceedings of the Ninth World Conference on Earthquake Engineering, Tokyo, Japan, 2–9 August 1988; Volume 4, pp. 719–724. [Google Scholar]
- Kiggins, S.; Uang, C.M. Reducing residual drift of buckling-restrained braced frames as a dual system. Eng. Struct. 2006, 28, 1525–1532. [Google Scholar] [CrossRef]
- Takeuchi, T.; Hajjar, J.F.; Matsui, R.; Nishimoto, K.; Aiken, I.D. Local buckling restraint condition for core plates in buckling restrained braces. J. Constr. Steel Res. 2010, 66, 139–149. [Google Scholar] [CrossRef]
- Takeuchi, T.; Hajjar, J.F.; Matsui, R.; Nishimoto, K.; Aiken, I.D. Effect of local buckling core plate restraint in buckling restrained braces. Eng. Struct. 2012, 44, 304–311. [Google Scholar] [CrossRef]
- Palmer, K.D.; Christopulos, A.S.; Lehman, D.E.; Roeder, C.W. Experimental evaluation of cyclically loaded, large-scale, planar and 3-d buckling-restrained braced frames. J. Constr. Steel Res. 2014, 101, 415–425. [Google Scholar] [CrossRef]
- Atlayan, O.; Charney, F.A. Hybrid buckling-restrained braced frames. J. Constr. Steel Res. 2014, 96, 95–105. [Google Scholar] [CrossRef]
- Budaházy, V.; Dunai, L. Numerical analysis of concrete filled buckling restrained braces. J. Constr. Steel Res. 2015, 115, 92–105. [Google Scholar] [CrossRef]
- Ebadi Jamkhaneh, M.; Homaioon Ebrahimi, A.; Shokri Amiri, M. Seismic performance of steel-braced frames with an all-steel buckling restrained brace. Pract. Period. Struct. Des. Constr. 2018, 23, 04018016. [Google Scholar] [CrossRef]
- Abbasnia, R.; Vetr, M.G.H.; Ahmadi, R.; Kafi, M.A. Experimental and analytical investigation on the steel ring ductility. Sharif J. Sci. Technol. 2008, 52, 41–48. [Google Scholar]
- Bazzaz, M.; Andalib, Z.; Kheyroddin, A.; Kafi, M.A. Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system. J. Steel Compos. Struct. 2015, 19, 917–937. [Google Scholar] [CrossRef]
- Azandariani, M.G.; Abdolmaleki, H.; Azandariani, A.G. Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs). Thin-Walled Struct. 2020, 151, 106751. [Google Scholar] [CrossRef]
- Roeder, C.W.; Popov, E.P. Inelastic behavior of eccentrically braced steel frames under cyclic loadings. STIN 1977, 78, 20375. [Google Scholar]
- Richards, P.W.; Uang, C.M. Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity. J. Struct. Eng. 2005, 131, 1546–1552. [Google Scholar] [CrossRef]
- Okazaki, T.; Engelhardt, M.D.; Hong, J.K.; Uang, C.M.; Drolias, A. Improved link-to-column connections for steel eccentrically braced frames. J. Struct. Eng. 2015, 141, 04014201. [Google Scholar] [CrossRef]
- Shayanfar, M.A.; Rezaeian, A.R.; Taherkhani, S. Assessment of the seismic behavior of eccentrically braced frame with double vertical link (DV-EBF). In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008; pp. 12–17. [Google Scholar]
- Shayanfar, M.A.; Barkhordari, M.A.; Rezaeian, A.R. Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames. Steel Compos. Struct. 2012, 12, 13–29. [Google Scholar] [CrossRef]
- Shayanfar, M.A.; Rezaeian, A.R.; Zanganeh, A. Seismic performance of eccentrically braced frame with vertical link using PBPD method. Struct. Des. Tall Spec. Build. 2014, 23, 1–21. [Google Scholar] [CrossRef]
- Bouwkamp, J.; Vetr, M.G.; Ghamari, A. An analytical model for inelastic cyclic response of eccentrically braced frame with vertical shear link (V-EBF). Case Stud. Struct. Eng. 2016, 6, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Vetr, M.G.; Ghamari, A.; Bouwkamp, J. Investigating the nonlinear behavior of Eccentrically Braced Frame with vertical shear links (V-EBF). J. Build. Eng. 2017, 10, 47–59. [Google Scholar] [CrossRef]
- Vetr, M.G.; Ghamari, A. Experimentally and analytically study on eccentrically braced frame with vertical shear links. Struct. Des. Tall Spec. Build. 2019, 28, e1587. [Google Scholar] [CrossRef]
- Ghamari, A.; Kim, Y.; Bae, J. Utilizing an I-shaped shear link as a damper to improve the behaviour of a concentrically braced frame. J. Construct. Steel Res. 2021, 186, 1–13. [Google Scholar] [CrossRef]
- Ghamari, A.; Haeri, H.; Khaloo, A.; Zhu, Z. Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper. Steel Compos. Struct. 2019, 30, 383–392. [Google Scholar]
- Zahrai, S.M.; Moslehi Tabar, A. Analytical study on cyclic behavior of chevron braced frames with shear panel system considering post-yield deformation. Can. J. Civ. Eng. 2013, 40, 633–643. [Google Scholar] [CrossRef]
- Zahrai, S.M. Cyclic testing of chevron braced steel frames with IPE shear panels. Steel Compos. Struct. 2015, 19, 1167–1184. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Kim, Y.B.; Nakazawa, S.; Ohya, T. Simulation of the cyclic behavior of J-shaped steel hysteresis devices and study on the efficiency for reducing earthquake responses of space structures. J. Constr. Steel Res. 2005, 1457–1473. [Google Scholar] [CrossRef]
- Deng, K.; Pan, P.; Wang, C. Development of crawler steel damper for bridges. J. Constr. Steel Res. 2015, 140–150. [Google Scholar] [CrossRef]
- Zkaynak, H. Model proposal for steel cushions for use in reinforced concrete frames. KSCE J. Civ. Eng. 2017, 21, 2717–2727. [Google Scholar] [CrossRef]
- Xu, L.Y.; Nie, X.; Fan, J.S. Cyclic behaviour of low-yield-point steel shear panel dampers. Eng. Struct. 2016, 126, 391–404. [Google Scholar] [CrossRef]
- Basler, K. Strength of plate girders in shear. J. Struct. Div. 1961, 87, 151–180. [Google Scholar] [CrossRef]
- Ozcelik, Y.; Clayton, P. Strip model for steel plate shear walls with beam-connected web plates. Eng. Struct. 2017, 136, 369–379. [Google Scholar] [CrossRef]
- ASHTO, American Association of State Highway and Transportation Officials. LRFD Bridge Design Specifications, 3rd ed.; ASHTO: Washington, DC, USA, 2005. [Google Scholar]
- Applied Technology Council (ATC). Guidelines for Cyclic Seismic Testing of Components of Steel Structures; ATC-24; ATC: Redwood, CA, USA, 1992. [Google Scholar]
- ASTM D3999-91. Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus; American Society for Testing and Materials: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Nguyen, T.; Indraratn, B.; Singh, M. Dynamic parameters of subgrade soils prone to mud pumping considering the influence of kaolin content and the cyclic stress ratio. Transp. Geotech. 2021, 29, 100581. [Google Scholar] [CrossRef]
- Ghadami, A.; Pourmoosavi, G.; Ghamari, A. Seismic design of elements outside of the short low-yield-point steel shear links. J. Constr. Steel Res. 2021, 178, 106489. [Google Scholar] [CrossRef]
- Azad, S.K.; Topkaya, C. A review of research on steel eccentrically braced frames. J. Constr. Steel Res. 2017, 128, 53–73. [Google Scholar] [CrossRef]
- Daneshmand, A.; Hashemi, B. Performance of intermediate and long links in eccentrically braced frames. J. Constr. Steel Res. 2012, 70, 167–176. [Google Scholar] [CrossRef]
- Dusicka, P.; Itani, A.M.; Buckle, I.G. Cyclic behavior of shear links of various grades of plate steel. J. Struct. Eng. 2010, 136, 370–378. [Google Scholar] [CrossRef]
- AISC 341-16. Seismic Provisions for Structural Steel Buildings; American Institute of Steel Constriction: Chicago, IL, USA, 2016. [Google Scholar]
Models | Fy (MPa) | Fu (MPa) | E (GPa) |
---|---|---|---|
Main plate | 120 | 184.6 | 200 |
Cover plate | 235 | 370 | 200 |
Stiffeners (cross_section) | 120 | 186 | 205 |
Fu (kN) | K (kN/mm) | |||||
---|---|---|---|---|---|---|
Positive | Negative | Positive | Negative | |||
S_P_St | 228.95 | −233.58 | 4.54 | 5.93 | 150.00 | 3.33 |
M_P_St | 123.80 | −104.34 | 2.45 | 2.65 | 38.00 | 0.84 |
M_P | 50.48 | −39.37 | 45.00 |
Model | b (mm) | t (mm) | h (mm) | n | bf (mm) | b/h | λ | Buckling Type | Mechanism | ||
---|---|---|---|---|---|---|---|---|---|---|---|
M_E | 220 | 1 | 260 | 12 | --- | 0.85 | 3.13 | 7.62 | 3.92 | Elastic | Flexural |
M_I | 220 | 2 | 260 | 6 | --- | 0.85 | 3.13 | 3.81 | 3.92 | Inelastic | Flexural |
M_P | 220 | 3 | 260 | 4 | --- | 0.85 | 3.13 | 2.54 | 3.92 | Plastic | Flexural |
M_P_St | 220 | 1 | 220 | 12 | 70 | 1.00 | 3.42 | 7.62 | 4.28 | Elastic | Flexural |
M_I_St | 220 | 1.5 | 220 | 8 | 70 | 1.00 | 3.42 | 5.08 | 4.28 | Inelastic | Flexural |
M_E_St | 220 | 3 | 220 | 4 | 70 | 1.00 | 3.42 | 2.54 | 4.28 | Plastic | Flexural |
S_P_St | 220 | 1 | 120 | 12 | 70 | 1.83 | 4.86 | 7.62 | 6.07 | Elastic | Shear_Flexural |
S_I_St | 220 | 1.5 | 120 | 8 | 70 | 1.83 | 4.86 | 5.08 | 6.07 | Inelastic | Shear_Flexural |
S_E_St | 220 | 3 | 120 | 4 | 70 | 1.83 | 4.86 | 2.54 | 6.07 | Plastic | Shear_Flexural |
Models | Vu (kN) | Kd (kN/mm) | ||
---|---|---|---|---|
Vu | Kd | |||
M_P | 251.603 | 441.33 | ||
M_I | 268.273 | 583.47 | ||
M_E | 223 | 528.57 | ||
M_P_St | 503.558 | 469.56 | 2.00 | 1.06 |
M_I_St | 512.196 | 1081.748 | 1.91 | 1.85 |
M_E_St | 267.6 | 1394.80 | 1.20 | 2.64 |
S_P_St | 604.681 | 1985.16 | 2.40 | 4.50 |
S_I_St | 660.454 | 918.60 | 2.46 | 1.57 |
S_E_St | 630.256 | 938.71 | 2.83 | 1.78 |
Models | FE Results | Proposed Relations | Error (%) | |||
---|---|---|---|---|---|---|
Vu (kN) | Kd (kN/mm) | Vu (kN) | Kd (kN/mm) | Equation (1) | Equation (2) | |
M_P | 251.603 | 441.33 | 226.44 | 419.26 | 11.11 | 5.26 |
M_I | 268.273 | 583.47 | 225.35 | 548.46 | 19.05 | 6.38 |
M_E | 223 | 528.57 | 202.93 | 507.43 | 9.89 | 4.17 |
M_P_St | 503.56 | 469.56 | 448.17 | 422.60 | 12.36 | 11.11 |
M_I_St | 512.12 | 1081.75 | 466.10 | 973.57 | 9.89 | 11.11 |
M_E_St | 267.6 | 1394.80 | 238.16 | 1255.32 | 12.36 | 11.11 |
S_P_St | 604.681 | 1985.16 | 556.31 | 1925.61 | 8.70 | 3.09 |
S_I_St | 660.454 | 918.60 | 601.01 | 881.86 | 9.89 | 4.17 |
S_E_St | 630.256 | 938.71 | 579.84 | 882.39 | 8.70 | 6.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghamari, A.; Almasi, B.; Kim, C.-h.; Jeong, S.-H.; Hong, K.-J. An Innovative Steel Damper with a Flexural and Shear–Flexural Mechanism to Enhance the CBF System Behavior: An Experimental and Numerical Study. Appl. Sci. 2021, 11, 11454. https://doi.org/10.3390/app112311454
Ghamari A, Almasi B, Kim C-h, Jeong S-H, Hong K-J. An Innovative Steel Damper with a Flexural and Shear–Flexural Mechanism to Enhance the CBF System Behavior: An Experimental and Numerical Study. Applied Sciences. 2021; 11(23):11454. https://doi.org/10.3390/app112311454
Chicago/Turabian StyleGhamari, Ali, Behroz Almasi, Chang-hyuk Kim, Seong-Hoon Jeong, and Kee-Jeung Hong. 2021. "An Innovative Steel Damper with a Flexural and Shear–Flexural Mechanism to Enhance the CBF System Behavior: An Experimental and Numerical Study" Applied Sciences 11, no. 23: 11454. https://doi.org/10.3390/app112311454
APA StyleGhamari, A., Almasi, B., Kim, C. -h., Jeong, S. -H., & Hong, K. -J. (2021). An Innovative Steel Damper with a Flexural and Shear–Flexural Mechanism to Enhance the CBF System Behavior: An Experimental and Numerical Study. Applied Sciences, 11(23), 11454. https://doi.org/10.3390/app112311454