Enhanced Performance of PVDF Composite Ultrafiltration Membrane via Degradation of Collagen-Modified Graphene Oxide
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Materials
2.2. Preparation Process
2.2.1. Degradation of Collagen-Modified Graphene Oxide
2.2.2. PVDF Composite Ultrafiltration Membrane
2.3. Characterization and Testing
2.3.1. Structural Characterization
- Chemical structure
- 2.
- Micro structure
- 3.
- Pore structure
2.3.2. Water Contact Angle Testing
2.3.3. Testing for Pure Water Flux and Antifouling Performance of Membrane
3. Results and Discussion
3.1. Structure Analysis
3.1.1. Chemical Structure of GO and CGO
3.1.2. Micro Structure of PVDF Membrane
3.1.3. Pore Structure of PVDF Membrane
3.2. Performance of PVDF Composite Ultrafiltration Membrane
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alexander, K.T.W.; Corning, D.R.; Donohue, V.J.; Sykes, R.L. Environmental and safety issues-clean technology and environmental auditing. J. Soc. Leather Technol. Chem. 1992, 76, 17–23. [Google Scholar]
- Ding, X.; Shan, Z.; Long, Z.; Chen, Z. Utilization of collagen protein extracted from chrome leather scraps as a set retarders in gypsum. Constr. Build. Mater. 2020, 237, 117584. [Google Scholar] [CrossRef]
- Ma, J.; Hou, X.; Gao, D.; Lv, B.; Zhang, J. Greener approach to efficient leather soaking process: Role of enzymes and their synergistic effect. J. Clean. Prod. 2014, 78, 226–232. [Google Scholar] [CrossRef]
- Pillai, P.; Archana, G. A novel process for biodegradation and effective utilization of chrome shavings, a solid waste generated in tanneries, using chromium resistant Bacillus subtilis P13. Process. Biochem. 2012, 47, 2116–2122. [Google Scholar] [CrossRef]
- Cao, S.; Song, J.; Li, H.; Wang, K.; Li, Y.; Lu, F.; Liu, B. Improving characteristics of biochar produced from collagen-containing solid wastes based on protease application in leather production. Waste Manag. 2020, 105, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Lin, W.; Zhang, M.; Zhu, Q. Towards zero discharge of chromium-containing leather waste through improved alkali hydrolysis. Waste Manag. 2003, 23, 835–843. [Google Scholar] [CrossRef]
- Pandey, D.; Reifenberger, R.; Piner, R. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf. Sci. 2008, 602, 1607–1613. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Chu, X.; Chen, T.; Ge, J.; Yu, R. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed. 2011, 50, 7065–7069. [Google Scholar] [CrossRef] [PubMed]
- Mahroo, K.; Khadijeh, D.; Meisam, S. Simple and fast preparation of graphene oxide@melamine terephthaldehyde and its PVC nanocomposite via ultrasonic irradiation: Chemical and thermal resistance study. Ultrason. Sonochem. 2018, 43, 275–284. [Google Scholar]
- Zhang, X.; Feng, Y.; Tang, S.; Feng, W. Preparation of a graphene oxide–phthalocyanine hybrid through strong π-π interactions. Carbon 2010, 48, 211–216. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; White, J.C.; Xing, B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 2014, 48, 9995–10009. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Zhang, Y.; Zhang, Q.; Luan, X.; Duan, Y.; Pan, S.; Lv, F.; An, Q. Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 2015, 94, 590–598. [Google Scholar] [CrossRef]
- Oseoghaghare, O.; Reidy, R.F. Surface interactions: Functionalization of graphene oxide and wetting of graphene oxide and graphene. Curr. Org. Chem. 2016, 20, 674–681. [Google Scholar]
- Hu, M.; Guo, J.; Fan, J.; Li, P.; Chen, D. Dispersion of triethanolamine-functionalized graphene oxide (TEA-GO) in pore solution and its influence on hydration, mechanical behavior of cement composite. Constr. Build. Mater. 2019, 216, 128–136. [Google Scholar] [CrossRef]
- Jing, L.-C.; Wang, T.; Cao, W.-W.; Wen, J.-G.; Zhao, H.; Ning, Y.-J.; Yuan, X.-T.; Tian, Y.; Teng, L.-H.; Geng, H.-Z. Water-based polyurethane composite anticorrosive barrier coating via enhanced dispersion of functionalized graphene oxide in the presence of acidified multi-walled carbon nanotubes. Prog. Org. Coat. 2020, 146, 105734. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Pan, J.; Qi, Y.; Shen, J.; Gao, C.; Bruggen, B.V.D. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. J. Membr. Sci. 2017, 539, 128–137. [Google Scholar] [CrossRef]
- Ayyaru, S.; Ahn, Y. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J. Membr. Sci. 2017, 525, 210–219. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Moghareh Abed, M.R.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Z.; Shan, M.; Min, C.; Zhou, B.; Li, Y.; Li, B.; Liu, L.; Qian, X. Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep. Purif. Technol. 2013, 103, 78–83. [Google Scholar] [CrossRef]
- Shen, Y.; Lua, A.C. Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem. Eng. J. 2012, 192, 201–210. [Google Scholar] [CrossRef]
- Vanangamudi, A.; Saeki, D.; Dumée, L.F.; Duke, M.C.; Vasiljevic, T.; Matsuyama, H.; Yang, X. Surface-engineered biocatalytic composite membranes for reduced protein fouling and self-cleaning. ACS Appl. Mater. Interfaces 2018, 10, 27477–27487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Z.; Shan, M.; Zhou, B.; Li, Y.; Li, B.; Niu, J.; Qian, X. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci. 2013, 448, 81–92. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, T.; Shi, J.; Teng, K.; Wang, W.; Ma, M.; Li, J.; Li, C.; Fan, J. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J. Membr. Sci. 2016, 520, 281–293. [Google Scholar] [CrossRef]
- Bae, T.-H.; Tak, T.-M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 249, 1–8. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, L.; Xu, Y.; Li, Q.; Jiang, J.; Wang, X. Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. J. Colloid Interface Sci. 2017, 504, 429–439. [Google Scholar] [CrossRef]
- Wang, X.; Wen, H.; Liang, Y.; Yang, Y.; Wang, K.; Dan, W. Extracting collagen from chrome shavings using alkali and protease. West Leather 2018, 40, 41–45. [Google Scholar]
- Hou, Y.; Lv, S.; Liu, L.; Liu, X. High-quality preparation of graphene oxide via the Hummers’ method: Understanding the roles of the intercalator, oxidant, and graphite particle size. Ceram. Int. 2020, 46, 2392–2402. [Google Scholar] [CrossRef]
- Ma, H.; Xie, Q.; Wu, C.; Shen, L.; Hong, Z.; Zhang, G.; Lu, Y.; Shao, W. A facile approach to enhance performance of PVDF-matrix nanocomposite membrane via manipulating migration behavior of graphene oxide. J. Membr. Sci. 2019, 590, 117268. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, C.; Zhang, S.; Li, P.; Hou, D. Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl. Surf. Sci. 2017, 394, 149–159. [Google Scholar] [CrossRef]
- Saraswathi, M.S.A.; Kausalya, R.; Kaleekkal, N.J.; Rana, D.; Nagendran, A. BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2017, 5, 2937–2943. [Google Scholar] [CrossRef]
- Wang, X.; Hu, T.; Wang, Z.; Li, X.; Ren, Y. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water. Res. 2017, 123, 505–512. [Google Scholar] [CrossRef] [PubMed]
No. | PVDF (wt%) | PVP (wt%) | GO (wt%) | CGO (wt%) | NMP (wt%) |
---|---|---|---|---|---|
M0 | 18 | 3 | 0 | 0 | 79 |
M11 | 18 | 3 | 0.5 | 0 | 78.5 |
M12 | 18 | 3 | 0.75 | 0 | 78.25 |
M13 | 18 | 3 | 1.0 | 0 | 78 |
M14 | 18 | 3 | 1.25 | 0 | 77.75 |
M21 | 18 | 3 | 0 | 0.5 | 78.5 |
M22 | 18 | 3 | 0 | 0.75 | 78.25 |
M23 | 18 | 3 | 0 | 1.0 | 78 |
M24 | 18 | 3 | 0 | 1.25 | 77.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Lv, S.; Hu, H.; Wu, X.; Liu, L. Enhanced Performance of PVDF Composite Ultrafiltration Membrane via Degradation of Collagen-Modified Graphene Oxide. Appl. Sci. 2021, 11, 11513. https://doi.org/10.3390/app112311513
Hou Y, Lv S, Hu H, Wu X, Liu L. Enhanced Performance of PVDF Composite Ultrafiltration Membrane via Degradation of Collagen-Modified Graphene Oxide. Applied Sciences. 2021; 11(23):11513. https://doi.org/10.3390/app112311513
Chicago/Turabian StyleHou, Yonggang, Shenghua Lv, Haoyan Hu, Xinming Wu, and Leipeng Liu. 2021. "Enhanced Performance of PVDF Composite Ultrafiltration Membrane via Degradation of Collagen-Modified Graphene Oxide" Applied Sciences 11, no. 23: 11513. https://doi.org/10.3390/app112311513
APA StyleHou, Y., Lv, S., Hu, H., Wu, X., & Liu, L. (2021). Enhanced Performance of PVDF Composite Ultrafiltration Membrane via Degradation of Collagen-Modified Graphene Oxide. Applied Sciences, 11(23), 11513. https://doi.org/10.3390/app112311513