Effects of Infrared Drying Conditions and Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea americana) Pulp Powder
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pretreatment of Avocado Fruits
2.3. Infrared Drying Equipment
2.4. Infrared Drying of Avocado Pulp and Experimental Design
2.5. Analytical Methods
2.5.1. Preparation of Extracts
2.5.2. Determination of Total Polyphenol Content (TPC)
2.5.3. Determination of Antioxidant Activity (AA)
2.5.4. Pigment Extraction and Determination of Total Chlorophyll Content (TCC)
2.5.5. Determination of Peroxide Value (PV)
2.5.6. Determination of Color Attributes
2.6. Statistical Analysis
3. Results
3.1. The Quality of Avocado Flesh
3.2. Peroxide Value (PV)
3.3. Total Polyphenols, Total Chlorophylls, and Antioxidant Activity
3.4. Color Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lye, H.S.; Ong, M.K.; Teh, L.K.; Chang, C.C.; Wei, L.K. Chapter 4-Avocado. In Valorization of Fruit Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 67–93. [Google Scholar] [CrossRef]
- Duarte, P.F.; Chaves, M.A.; Borges, C.D.; Mendonça, C.R.B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 2016, 46, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Nayik, G.A.; Gull, A. Antioxidants in Fruits: Properties and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Selladurai, R.; Awachare, C.M. Nutrient management for avocado (Persea americana miller). J. Plant Nutr. 2019, 43, 138–147. [Google Scholar] [CrossRef]
- Ashton, O.B.O.; Wong, M.; McGhie, T.K.; Vather, R.; Wang, Y.; Requejo-Jackman, C.; Ramankutty, P.; Woolf, A.B. Pigments in Avocado Tissue and Oil. J. Agric. Food Chem. 2006, 54, 10151–10158. [Google Scholar] [CrossRef]
- Comerford, K.B.; Ayoob, K.T.; Murray, R.D.; Atkinson, S.A. The Role of Avocados in Complementary and Transitional Feeding. Nutrients 2016, 8, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bill, M.; Sivakumar, D.; Thompson, A.K.; Korsten, L. Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Rev. Int. 2014, 30, 169–202. [Google Scholar] [CrossRef] [Green Version]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Chieh, C. Water Chemistry and Biochemistry. Food Biochem. Food Process 2006, 1, 103–133. [Google Scholar]
- Souza, D.S.; Marques, L.G.; Gomes, E.D.B.; Narain, N. Lyophilization of Avocado (Persea americana Mill.): Effect of Freezing and Lyophilization Pressure on Antioxidant Activity, Texture, and Browning of Pulp. Dry. Technol. 2014, 33, 194–204. [Google Scholar] [CrossRef]
- Rafidah, H.; Ando, Y.; Amin, I.; Shirai, Y.; Mohd Ali, H. Enhanced Polyphenol Content and Antioxidant Capacity in the Edible Portion of Avocado Dried with Superheated-Steam. Int. J. Adv. Res. 2014, 8, 241–248. [Google Scholar]
- Castañeda-Saucedo, M.C.; Miramontes, E.H.V.; Campos, E.T.; Delgado-Alvarado, A.; Bernardino-García, A.C.; Rodríguez-Ramírez, M.R.; Anaya, J.D.P.R. Effect of freeze-drying and production process on the chemical composition and fatty acids profile of avocado pulp. Revista Chilena de Nutrición 2014, 41, 404–411. [Google Scholar] [CrossRef]
- Temu, A.T. Effect of Temperature and Slice Size on Avocado Pulp Drying Rate and Oil Yield. Tanzan. J. Eng. Technol. 2013, 34, 116–124. [Google Scholar] [CrossRef]
- Ceylan, I.; Aktaş, M.; Doğan, H. Mathematical modeling of drying characteristics of tropical fruits. Appl. Therm. Eng. 2007, 27, 1931–1936. [Google Scholar] [CrossRef]
- Prosapio, V.; Norton, I. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT 2017, 80, 401–408. [Google Scholar] [CrossRef]
- Langford, A.; Bhatnagar, B.; Walters, R.; Tchessalov, S.; Ohtake, S. Drying technologies for biopharmaceutical applications: Recent developments and future direction. Dry. Technol. 2017, 36, 677–684. [Google Scholar] [CrossRef]
- Degenhardt, A.G.; Hofmann, T. Bitter-Tasting and Kokumi-Enhancing Molecules in Thermally Processed Avocado (Persea americana Mill.). J. Agric. Food Chem. 2010, 58, 12906–12915. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.A.; Norton, T.; Alagusundaram, K.; Tiwari, B.K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6, 43–55. [Google Scholar] [CrossRef]
- Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S.C. Infrared Drying of Food Materials: Recent Advances. Food Eng. Rev. 2020, 12, 381–398. [Google Scholar] [CrossRef]
- Rastogi, N.K. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 2012, 52, 737–760. [Google Scholar] [CrossRef]
- Abu Khalifeh, H.; Dhib, R.; Fayed, M.E. Model Predictive Control of an Infrared-Convective Dryer. Dry. Technol. 2005, 23, 497–511. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Fang, Z.; Xu, B. Application of Intermediate-Wave Infrared Drying in Preparation of Mushroom Chewing Tablets. Dry. Technol. 2014, 32, 1820–1827. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M.; Siahmansouri, P.; Moradi, E. Moisture Loss Kinetics of Persimmon during Combined Hot Air-Infrared Drying Process. J. Food Technol. Nutr. 2017, 14, 39–48. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, K.C. Modeling of Muti-layer Far-Infrared Dryer. Dry. Technol. 2004, 22, 809–820. [Google Scholar] [CrossRef]
- Olsson, E.; Trägårdh, A.; Ahrné, L. Effect of Near-infrared Radiation and Jet Impingement Heat Transfer on Crust Formation of Bread. J. Food Sci. 2005, 70, e484–e491. [Google Scholar] [CrossRef]
- Yan, J.-K.; Wu, L.-X.; Qiao, Z.-R.; Cai, W.-D.; Ma, H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2018, 271, 588–596. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Lv, S.; Xu, J.-G.; Zhang, L.-F. Influence of Drying Methods on Chemical Compositions, Antioxidant and Antibacterial Activity of Essential Oil from Lemon Peel. Nat. Prod. Res. 2018, 32, 1184–1188. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F. Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. Int. J. Fruit Sci. 2019, 20, 586–602. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- ISO. ISO 14502-1: 2005, Determination of Substances Characteristic of Green and Black Tea—Part 1: Content of Total Polyphenols in Tea-Colorimetric Method Using Folin-Ciocalteu Reagent; International Organization for Standardization: Geneva, Switzerland, 2005; p. 10. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Kassim, A.; Workneh, T.; Bezuidenhout, C. A Review on Postharvest Handling of Avocado Fruit. Afr. J. Agric. Res. 2013, 8, 2385–2402. [Google Scholar]
- Fu, M.; Qu, Q.; Yang, X.; Zhang, X. Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT 2016, 65, 1126–1132. [Google Scholar] [CrossRef]
- Phatanayindee, S.; Borompichaichartkul, C.; Srzednicki, G.; Craske, J.; Wootton, M. Changes of Chemical and Physical Quality Attributes of Macadamia Nuts during Hybrid Drying and Processing. Dry. Technol. 2012, 30, 1870–1880. [Google Scholar] [CrossRef]
- Chen, B.; McClements, D.; Decker, E. Minor Components in Food Oils: A Critical Review of their Roles on Lipid Oxidation Chemistry in Bulk Oils and Emulsions. Crit. Rev. Food Sci. Nutr. 2011, 51, 901–916. [Google Scholar] [CrossRef]
- Wang, T.; Hammond, E. Lipoxygenase and Lipid Oxidation in Foods. In Oxidation in Foods and Beverages and Antioxidant Applications; Elsevier: Amsterdam, The Netherlands, 2010; pp. 105–121. [Google Scholar]
- Jacobo-Velázquez, D.A.; Hernández-Brenes, C.; Cisneros-Zevallos, L.; Benavides, J. Partial purification and enzymatic characterization of avocado (Persea americana Mill, cv. Hass) lipoxygenase. Food Res. Int. 2010, 43, 1079–1085. [Google Scholar] [CrossRef]
- McSweeney, M.; Seetharaman, K. State of Polyphenols in the Drying Process of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2014, 55, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Alvarez, L.; Parada-Dorantes, L.; Ortiz-Moreno, A.; Santiago-Pineda, T.; Chiralt-Boix, A.; Barbosa-Cánovas, G. Effect of anti-browning compounds on the quality of minimally processed avocados/Efecto de inhibidores del pardeamiento en la calidad de aguacates mínimamente procesados. Food Sci. Technol. Int. 1998, 4, 107–113. [Google Scholar] [CrossRef]
- Soliva, R.C.; Elez, P.; Sebastián, M.; Martín, O. Evaluation of Browning Effect on Avocado Purée Preserved by Combined Methods. Innov. Food Sci. Emerg. Technol. 2000, 1, 261–268. [Google Scholar] [CrossRef]
- Vanini, L.S.; Kwiatkowski, A.; Clemente, E. Polyphenoloxidase and peroxidase in avocado pulp (Persea americana Mill.). Food Sci. Technol. 2010, 30, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tey, C.Y.; Bingol, G.; Bi, J. Effect of microwave treatment on enzyme inactivation and quality change of defatted avocado puree during storage. Innov. Food Sci. Emerg. Technol. 2016, 37, 61–67. [Google Scholar] [CrossRef]
- Gómez-López, V.M. Some biochemical properties of polyphenol oxidase from two varieties of avocado. Food Chem. 2002, 77, 163–169. [Google Scholar] [CrossRef]
- Heindl, A.G.; Müller, J. Microwave Drying of Medicinal and Aromatic Plants. Stewart Postharvest Rev. 2007, 3, 1–6. [Google Scholar]
- Krokida, M.K.; Maroulis, Z.B.; Saravacos, G.D. The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci. Technol. 2001, 36, 53–59. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Lv, F.; Bie, X. Study on microencapsulation of curcumin pigments by spray drying. Eur. Food Res. Technol. 2009, 229, 391–396. [Google Scholar] [CrossRef]
- Pareek, S.; Sagar, N.A.; Sharma, S.; Kumar, V.; Agarwal, T.; González-Aguilar, G.A.; Yahia, E.M. Chlorophylls: Chemistry and Biological Functions. In Fruit and Vegetable Phytochemicals; Wiley-Blackwell: Hoboken, NJ, USA, 2017; p. 269. [Google Scholar]
- Ahmed, J.; Shivhare, U.; Singh, G. Drying Characteristics and Product Quality of Coriander Leaves. Food Bioprod. Process. 2001, 79, 103–106. [Google Scholar] [CrossRef]
- Yamauchi, N.; Funamoto, Y.; Shigyo, M. Peroxidase-mediated chlorophyll degradation in horticultural crops. Phytochem. Rev. 2004, 3, 221–228. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Barros, R.M.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Tsami, E.; Katsioti, M. Drying Kinetics for Some Fruits: Predicting of Porosity and Color During Dehydration. Dry. Technol. 2000, 18, 1559–1581. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M. Mass Transfer and Color Changes Kinetics of Infrared-Vacuum Drying of Grapefruit Slices. Int. J. Fruit Sci. 2018, 18, 1–16. [Google Scholar] [CrossRef]
- Bahloul, N.; Kouhila, M.; Kechaou, N. Effect of convective solar drying on colour, total phenols and radical scavenging activity of olive leaves (Olea europaea L.). Int. J. Food Sci. Technol. 2009, 44, 2561–2567. [Google Scholar] [CrossRef]
- Rudra, S.G.; Singh, H.; Basu, S.; Shivhare, U.S. Enthalpy entropy compensation during thermal degradation of chlorophyll in mint and coriander puree. J. Food Eng. 2008, 86, 379–387. [Google Scholar] [CrossRef]
- Hershkovitz, V.; Saguy, S.I.; Pesis, E. Postharvest application of 1-MCP to improve the quality of various avocado cultivars. Postharvest Biol. Technol. 2005, 37, 252–264. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol. 2016, 287, 308–314. [Google Scholar] [CrossRef]
Characteristics | Unit | Value |
---|---|---|
Moisture | g/100 g | 82.4 ± 0.5 |
TPC | mg GAE/g d.b | 5.33 ± 0.06 |
TCC | μg/g d.b | 260.38 ± 5.52 |
AA | mg TE/g d.b | 1.60 ± 0.05 |
PV | meq/kg | Not detected |
Color parameters | ||
L* value | 60.87 ± 0.59 | |
a* value | −23.11 ± 0.96 | |
b* value | 55.82 ± 1.13 |
TPC | TCC | AA | L* | a* | b* | |
---|---|---|---|---|---|---|
TPC p-value | 1 - | |||||
TCC p-value | 0.83 7.1 × 10−7 | 1 | ||||
AA p-value | 0.77 9.6 × 10−6 | 0.90 2.4 × 10−9 | 1 - | |||
L* p-value | 0.93 6.7 × 10−11 | 0.72 7.0 × 10−5 | 0.71 1.1 × 10−4 | 1 - | ||
a* p-value | −0.79 5.2 × 10−6 | −0.82 7.8 × 10−7 | −0.73 6.0 × 10−5 | −0.78 5.7 × 10−6 | 1 - | |
b* p-value | 0.93 2.5 × 10−11 | 0.91 8.1 × 10−10 | 0.79 3.9 × 10−6 | 0.87 4.5 × 10−8 | −0.91 6.1 × 10−10 | 1 - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-V.-L.; Nguyen, Q.-D.; Nguyen, T.-T.-D.; Nguyen, P.-B.-D. Effects of Infrared Drying Conditions and Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea americana) Pulp Powder. Appl. Sci. 2021, 11, 11803. https://doi.org/10.3390/app112411803
Nguyen T-V-L, Nguyen Q-D, Nguyen T-T-D, Nguyen P-B-D. Effects of Infrared Drying Conditions and Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea americana) Pulp Powder. Applied Sciences. 2021; 11(24):11803. https://doi.org/10.3390/app112411803
Chicago/Turabian StyleNguyen, Thi-Van-Linh, Quoc-Duy Nguyen, Thi-Thuy-Dung Nguyen, and Phuoc-Bao-Duy Nguyen. 2021. "Effects of Infrared Drying Conditions and Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea americana) Pulp Powder" Applied Sciences 11, no. 24: 11803. https://doi.org/10.3390/app112411803
APA StyleNguyen, T. -V. -L., Nguyen, Q. -D., Nguyen, T. -T. -D., & Nguyen, P. -B. -D. (2021). Effects of Infrared Drying Conditions and Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea americana) Pulp Powder. Applied Sciences, 11(24), 11803. https://doi.org/10.3390/app112411803