The Application of Microplasma in the Terahertz Field: A Review
Abstract
:1. Introduction
2. Application of Microplasma in THz Functional Devices
2.1. Terahertz Source
2.2. Terahertz Amplifier
2.3. Terahertz Filter
2.4. Terahertz Detector
3. Challenges
3.1. THz Radiation from Laser-Induced Microplasma
3.2. The Amplification of THz Radiation by Microplasma
3.3. Microplasma Photonic Crystals
3.4. THz Detection by Microplasma
4. Conclusions
- (1)
- THz sources generated by the “one-color” and “two-color” methods are based on the laser-induced microplasma, where the microplasma has high electron density in the range of 1017 cm−3–1019 cm−3. The size of microplasma and the electron density greatly impact the optical-to-THz conversion efficiency. The THz sources have the advantages of a broad frequency spectrum and high power, which is very useful for identifying molecular crystals and biological macromolecules.
- (2)
- In addition to the laser-induced microplasma, the microplasma in the capillary generated by gas discharge has proved helpful in amplifying the THz wave. It shows the possibility that the microplasma can be served as a THz amplifier, which has the advantages of high-power amplification at high efficiency. However, different amplification mechanisms based on four-wave-mixing parametric processes, the negative absolute conductivity of microplasma, and electric dipoles are proposed, which are needed to investigate in the future.
- (3)
- Both experimental and simulation results demonstrated that microplasma photonic crystals have THz stopbands or passbands in the frequency range of 0.1–0.2 THz, which allows tuning the THz wave propagation by changing the plasma parameters. The THz filters based on the microplasma photonic crystals have advantages of fast response and reconfiguration ability. However, the control of THz wave propagation with frequency up to 1 THz or higher by microplasma photonic crystals needs further exploration.
- (4)
- The detection methods of THz radiation, based on the second-harmonic generation, emission of fluorescence, and acoustic signals from laser-induced microplasma, have been developed and well studied. In addition, a simple detection method of THz radiation, based on the interaction between THz wave and the microplasma produced by glow discharge, is introduced. However, the detection mechanism of this method remains unknown at present.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, W.; Chao, T.; Zhu, S. Terahertz Time Domain Spectroscopy of Transformer Insulation Paper after Thermal Aging Intervals. Materials 2018, 11, 2124. [Google Scholar]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2447. [Google Scholar] [CrossRef]
- Siegel, P.H. THz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Shi, S.C.; Paine, S.; Yao, Q.J.; Lin, Z.H.; Li, X.X.; Duan, W.Y.; Matsuo, H.; Zhang, Q.; Yang, J.; Ashley, M.C.B.; et al. Terahertz and far-infrared windows opened at Dome A in Antarctica. Nat. Astron. 2016, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Hangyo, M. Development and future prospects of terahertz technology. Jpn. J. Appl. Phys. 2015, 54, 1–16. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 1–43. [Google Scholar] [CrossRef]
- Son, J.H.; Oh, S.J.; Cheon, H. Potential clinical applications of terahertz radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- Shen, Y.C.; Lo, T.; Taday, P.F. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 2005, 86, 377. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, I.F.; Jornet, J.M.; Chong, H. Terahertz band: Next frontier for wireless communications. Phys. Commun. 2014, 12, 16–32. [Google Scholar] [CrossRef]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cappelli, M.A. A tunable microwave plasma photonic crystal filter. Appl. Phys. Lett. 2015, 107, 199902. [Google Scholar] [CrossRef] [Green Version]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasma; Science Press: Beijing, China, 1978. [Google Scholar]
- Waldman, M.; Gordon, R.G. Generalized electron gas–Drude model theory of intermolecular forces. J. Chem. Phys. 1979, 71, 1340–1352. [Google Scholar] [CrossRef]
- Sakai, O.; Tachibana, K. Plasmas as metamaterials: A review. Plasma Sources Sci. Technol. 2012, 21, 013001. [Google Scholar] [CrossRef]
- Xu, L.L.; Tao, Z.Y.; Sang, T.Q. Thermally Tunable Narrow Band Filter Achieved by Connecting Two Opaque Terahertz Waveguides. IEEE Photonics Technol. Lett. 2017, 29, 869–872. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Sun, Q.; Huang, N.A. Tunable Terahertz Photonic Crystal Narrow-Band Filter. IEEE Photonics Technol. Lett. 2015, 27, 752–754. [Google Scholar] [CrossRef]
- Xue, Q.W.; Wang, X.H.; Liu, C.L.; Liu, Y.W. Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semi-conductor. Plasma Sci. Technol. 2018, 20, 035504. [Google Scholar] [CrossRef] [Green Version]
- Federici, J.; Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 2010, 107, 6–323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Yu, J. Generation and Detection of Terahertz Signal. In Broadband Terahertz Communication Technologies; Springer: Singapore, 2021. [Google Scholar]
- Shur, M. Terahertz technology: Devices and applications. In Proceedings of the 35th European Solid-State Device Research Conference, Grenoble, France, 16 September 2005. [Google Scholar]
- Karpowicz, N.; Dai, J.; Lu, X.; Chen, Y.; Yamaguchi, M.; Zhao, H.; Zhang, X.-C. Coherent heterodyne time-domain spectrometry covering the entire "terahertz gap". Appl. Phys. Lett. 2008, 92, 011131. [Google Scholar] [CrossRef]
- Liao, G.; Li, Y.; Zhang, Y. Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions. Phys. Rev. Lett. 2016, 116, 205003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vvedenskii, N.V.; Korytin, A.I.; Kostin, V.A. Two-Color Laser-Plasma Generation of Terahertz Radiation Using a Frequency-Tunable Half Harmonic of a Femtosecond Pulse. Phys. Rev. Lett. 2014, 112, 055004. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, X.C. Generation of Elliptically Polarized Terahertz Waves from Laser-Induced Plasma with Double Helix Electrodes. Phys. Rev. Lett. 2012, 108, 123903. [Google Scholar] [CrossRef] [PubMed]
- de Alaiza Martínez, P.G.; Babushkin, I.; Bergé, L.; Skupin, S.; Cabrera-Granado, E.; Köhler, C.; Morgner, U.; Husakou, A.; Herrmann, J. Boosting Terahertz Generation in Laser-Field Ionized Gases Using a Sawtooth Wave Shape. Phys. Rev. Lett. 2015, 114, 183901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsubara, E.; Nagai, M.; Ashida, M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Appl. Phys. Lett. 2012, 101, 021105. [Google Scholar] [CrossRef]
- Hamster, H.; Sullivan, A.; Gordon, S. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 1993, 71, 2725. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Hochstrasser, R.M. Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 2000, 25, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Buccheri, F.; Zhang, X.C. Terahertz emission from laser-induced microplasma in ambient air. Optica 2015, 2, 366–369. [Google Scholar] [CrossRef]
- Liu, K.; Buccheri, F.; Zhang, X.C. Terahertz science and technology of micro-plasma. Physics 2015, 44, 6. [Google Scholar]
- Zhang, X.C.; Buccheri, F. Terahertz photonics of microplasma and beyond. Lith. J. Phys. 2018, 58, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yuan, X.; Sheng, Z. Scalable control of terahertz radiation from ultrashort laser-gas interaction. Appl. Phys. Lett. 2012, 101, 161908. [Google Scholar] [CrossRef]
- Ding, W.J.; Sheng, Z.M. Sub GV/cm terahertz radiation from relativistic laser-solid interactions via coherent transition radiation. Phys. Rev. E 2016, 93, 063204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.C.; Sheng, Z.M.; Dong, Q.L. Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Phys. Rev. E 2007, 75, 016407. [Google Scholar] [CrossRef]
- Thiele, I.; Martinez, P.G.D.A.; Nuter, R. Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas. Phys. Rev. A 2017, 96, 053814. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Koulouklidis, A.D.; Papazoglou, D.G. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica 2016, 3, 605–608. [Google Scholar] [CrossRef]
- Thiele, I.; Zhou, B.; Nguyen, A. Terahertz emission from laser-driven gas plasmas: A plasmonic point of view. Optica 2018, 5, 1617–1622. [Google Scholar] [CrossRef]
- Deal, W.R. Solid-state amplifiers for terahertz electronics. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 1122–1125. [Google Scholar]
- Tucek, J.C.; Basten, M.A.; Gallagher, D.A.; Kreischer, K.E. Testing of a 0.850THz vacuum electronic power amplifier. In Proceedings of the 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), Paris, France, 21–23 May 2013; pp. 1–2. [Google Scholar]
- Dai, J.; Xie, X.; Zhang, X.C. Terahertz wave amplification in gases with the excitation of femtosecond laser pulses. Appl. Phys. Lett. 2007, 91, 211102. [Google Scholar] [CrossRef]
- Bogatskaya, A.V.; Volkova, E.A.; Popov, A.M. Plasma channel produced by femtosecond laser pulses as a medium for amplifying electromagnetic radiation of the subterahertz frequency range. Quantum Electron. 2013, 43, 1110. [Google Scholar] [CrossRef]
- Bogatskaya, A.V.; Volkova, E.A.; Popov, A.M. On the possibility of a short subterahertz pulse amplification in a plasma channel created in air by intense laser radiation. J. Phys. D Appl. Phys. 2014, 47, 185202. [Google Scholar] [CrossRef]
- Bogatskaya, A.V.; Gnezdovskaia, N.E.; Volkova, E.A. The role of plasma kinetics in the process of THz pulses generation and amplification. Plasma Sources Sci. Technol. 2020, 29, 105016. [Google Scholar] [CrossRef]
- Tabib-Azar, M.; Fawole, O.C.; Pandey, S.S. Microplasma traveling wave terahertz amplifier. IEEE Trans. Electron. Devices 2017, 64, 3877–3884. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, S.B.; Kong, X.K. The properties of photonic band gaps for three-dimensional plasma photonic crystals in a di-amond structure. Phys. Plasmas 2013, 20, 042110. [Google Scholar] [CrossRef]
- Guo, B.; Xie, M.Q.; Peng, L. Photonic band structures of one-dimensional photonic crystals doped with plasma. Phys. Plasmas 2012, 19, 072111. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, J.T. Experiment and simulation on one-dimensional plasma photonic crystals. Phys. Plasmas 2014, 21, 103514. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, X.; Dong, L. Two-dimensional plasma photonic crystals in dielectric barrier discharge. Phys. Plasmas 2010, 17, 113501. [Google Scholar] [CrossRef]
- Askari, N.; Mirzaie, R.; Eslami, E. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal. Phys. Plasmas 2015, 22, 112117. [Google Scholar] [CrossRef]
- Qu, C.; Tian, P.; Semnani, A. Properties of arrays of microplasmas: Application to control of electromagnetic waves. Plasma Sources Sci. Technol. 2017, 26, 105006. [Google Scholar] [CrossRef] [Green Version]
- Shuqun, W.; Yuxiu, C.; Minge, L. Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal. Plasma Sci. Technol. 2020, 22, 115402. [Google Scholar]
- Paliwoda, M.C.; Rovey, J.L. Multiple parameter space bandgap control of reconfigurable atmospheric plasma photonic crystal. Phys. Plasmas 2020, 27, 023516. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Zhong, S. Tunable multichannel terahertz filtering properties of dielectric defect layer in one-dimensional magnetized plasma photonic crystal. Opt. Commun. 2020, 473, 125985. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Sakai, O.; Tachibana, K. Photonic bands in two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subterahertz ranges. J. Appl. Phys. 2007, 101, 073305. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Park, S.J.; Eden, J.G. Narrowband attenuation at 157 GHz by a plasma photonic crystal. J. Phys. D Appl. Phys. 2017, 50, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Yuan, C.; Li, H. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission. AIP Adv. 2019, 9, 065302. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.P.; Zhang, R.; Chen, W. Dynamic plasma/metal/dielectric photonic crystals in the mm-wave region: Electromagnetically-active artificial material for wireless communications and sensors. Appl. Phys. Rev. 2019, 6, 041406. [Google Scholar] [CrossRef]
- Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Park, S.G.; Melloch, M.R.; Weiner, A.M. Comparison of terahertz waveforms measured by electro-optic and photoconductive sampling. Appl. Phys. Lett. 1998, 73, 3184–3186. [Google Scholar] [CrossRef]
- Dai, J.; Xie, X.; Zhang, X.C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 2006, 97, 103903. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Phys. Rev. Lett. 2009, 103, 235002. [Google Scholar] [CrossRef] [Green Version]
- Clough, B.; Liu, J.; Zhang, X.C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Opt. Lett. 2010, 35, 3544–3546. [Google Scholar] [CrossRef]
- Clough, B.; Liu, J.; Zhang, X.C. “All air–plasma” terahertz spectroscopy. Opt. Lett. 2011, 36, 2399–2401. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Shi, W.; Chen, S. Terahertz continuous wave detection using weakly ionized plasma in inert gases. IEEE Electron. Device Lett. 2013, 34, 689–691. [Google Scholar] [CrossRef]
- Hou, L.; Han, X.; Shi, W. Detecting terahertz waves using microplasma array. In Proceedings of the 2016 IEEE International Conference on Plasma Science (ICOPS), Banff, AB, Canada, 19–23 June 2016. [Google Scholar]
- Kim, K.Y.; Glownia, J.H.; Taylor, A.J. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 2007, 15, 4577–4584. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Bai, Y.; Miao, T. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet. Opt. Express 2016, 24, 23009–23017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debayle, A.; Gremillet, L.; Berge, L. Analytical model for THz emissions induced by laser-gas interaction. Opt. Express 2014, 22, 13691–13709. [Google Scholar] [CrossRef]
- Du, H.; Chen, M.; Sheng, Z. THz emission control by tuning density profiles of neutral gas targets during intense laser-gas interaction. Appl. Phys. Lett. 2012, 101, 18111318. [Google Scholar] [CrossRef]
- Sheng, Z.M.; Mima, K.; Zhang, J. Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 2005, 94, 0950039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, G.Q.; Li, Y.T.; Li, C. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses. Phys. Rev. Lett. 2015, 114, 25500125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemp, A.J.; Pfund, R.; Meyer-Ter-Vehn, J. Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations. Phys. Plasmas 2004, 11, 5648–5657. [Google Scholar] [CrossRef]
- Babushkin, I.; Kuehn, W.; Khler, C. Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases. Phys. Rev. Lett. 2010, 105, 053903. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wu, S.; Liu, X.; Yang, L.; Zhang, C. The Application of Microplasma in the Terahertz Field: A Review. Appl. Sci. 2021, 11, 11858. https://doi.org/10.3390/app112411858
Guo Y, Wu S, Liu X, Yang L, Zhang C. The Application of Microplasma in the Terahertz Field: A Review. Applied Sciences. 2021; 11(24):11858. https://doi.org/10.3390/app112411858
Chicago/Turabian StyleGuo, Yue, Shuqun Wu, Xuhui Liu, Lu Yang, and Chaohai Zhang. 2021. "The Application of Microplasma in the Terahertz Field: A Review" Applied Sciences 11, no. 24: 11858. https://doi.org/10.3390/app112411858
APA StyleGuo, Y., Wu, S., Liu, X., Yang, L., & Zhang, C. (2021). The Application of Microplasma in the Terahertz Field: A Review. Applied Sciences, 11(24), 11858. https://doi.org/10.3390/app112411858