Influence of Biomechanical Parameters on Performance in Elite Triathletes along 29 Weeks of Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.2.1. Study Protocol
2.2.2. Anthropometry
2.2.3. Running Test (RT)
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentley, D.; Millet, G.; Vleck, V.; McNaughton, L. Specific aspects of contemporary triathlon: Implications for physiological analysis and performance. Sport. Med. 2002, 32, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, M.; Bianchini, L.; Minganti, C.; Sias, M.; Di Castro, A.; Vleck, V. Is the Bike Segment of Modern Olympic Triathlon More a Transition towards Running in Males than It Is in Females? Sports 2019, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horne, M.J. The relationship of race discipline with overall performance in sprint and standard distance triathlon age-group world championships. Int. J. Sport. Sci. Coach. 2017, 12, 814–822. [Google Scholar] [CrossRef]
- Figueiredo, P.; Marques, E.A.; Lepers, R. Changes in contributions of swimming, cycling, and running performances on overall triathlon performance over a 26-year period. J. Strength Cond. Res. 2016, 30, 2406–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vleck, V.; Bürgi, A.; Bentley, D. The consequences of swim, cycle, and run performance on overall result in elite olympic distance triathlon. Int. J. Sports Med. 2006, 27, 43–48. [Google Scholar] [CrossRef]
- Landers, G.J.; Blanksby, B.A.; Ackland, T.R.; Monson, R. Swim Positioning and its Influence on Triathlon Outcome. Int. J. Exerc. Sci. 2008, 1, 93–105. [Google Scholar]
- Landers, G.J.; Blanksby, B.A.; Ackland, T.R.; Smith, D. Morphology and performance of world championship triathletes. Ann. Hum. Biol. 2000, 27, 387–400. [Google Scholar] [CrossRef]
- Van Schuylenbergh, R.; Vanden Eynde, B.; Hespel, P. Prediction of sprint triathlon performance from laboratory tests. Eur. J. Appl. Physiol. 2004, 91, 94–99. [Google Scholar] [CrossRef]
- Rüst, C.; Lepers, R.; Stiefel, M.; Rosemann, T.; Knechtle, B. Performance in Olympic triathlon: Changes in performance of elite female and male triathletes in the ITU World Triathlon Series from 2009 to 2012. Springerplus 2013, 2, 685. [Google Scholar] [CrossRef] [Green Version]
- Cejuela, R.; Pérez-Turpin, J.; Villa, G.; Cortell, J.; Rodríguez-Marroyo, J. Análisis de los factores de rendimiento en triatlón distancia sprint. J. Hum. Sport Exerc. 2009, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Carey, D.G.; Tofte, C.; Pliego, G.J.; Raymond, R.L. Transferability of running and cycling training zones in triathletes: Implications for steady-state exercise. J. Strength Cond. Res. 2009, 23, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laursen, P.B.; Shing, C.M.; Tennant, S.C.; Prentice, C.M.; Jenkins, D.G. A comparison of the cycling performance of cyclists and triathletes. J. Sports Sci. 2003, 21, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Dréano, P.; Bentley, D.J. Physiological characteristics of elite short- and long-distance triathletes. Eur. J. Appl. Physiol. 2003, 88, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Schabort, E.J.; Killian, S.C.; St Clair Gibson, A.; Hawley, J.A.; Noakes, T.D. Prediction of triathlon race time from laboratory testing in national triathletes. Med. Sci. Sports Exerc. 2000, 32, 844–849. [Google Scholar] [CrossRef]
- Sleivert, G.G.; Rowlands, D.S. Physical and physiological factors associated with success in the triathlon. Sport. Med. 1996, 22, 8–18. [Google Scholar] [CrossRef]
- Moore, I.S. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sport. Med. 2016, 46, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Molina, J.; Ogueta-Alday, A.; Stickley, C.; Cámara, J.; Cabrejas-Ugartondo, J.; García-López, J. Differences in spatiotemporal parameters between trained runners and untrained participants. J. Strength Cond. Res. 2017, 31, 2169–2175. [Google Scholar] [CrossRef] [Green Version]
- Ogueta-Alday, A.; Morante, J.C.; Rodríguez-Marroyo, J.A.; Villa, J.G.; García-López, J. Influencia de los parámetros biomecánicos en el rendimiento y la economía de corredores de fondo aficionados. Biomecánica 2011, 19, 17–27. [Google Scholar] [CrossRef]
- Gómez-Molina, J.; Ogueta-Alday, A.; Camara, J.; Stickley, C.; García-lópez, J. Effect of 8 weeks of concurrent plyometric and running training on spatiotemporal and physiological variables of novice runners. Eur. J. Sport Sci. 2018, 18, 162–169. [Google Scholar] [CrossRef]
- Atwater, A.E. Gender differences in running. In Biomechanics of Distance Running; Human Kinetics Publishers: Champaign, IL, USA, 1990; pp. 321–362. [Google Scholar]
- Norris, M.; Anderson, R.; Kenny, I.C. Method analysis of accelerometers and gyroscopes in running gait: A systematic review. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2014, 228, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Higginson, B.K. Methods of running gait analysis. Curr. Sports Med. Rep. 2009, 8, 136–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, D.W.; Bransford, D.R.; Costill, D.L.; Daniels, J.T.; Howley, E.T.; Krahenbuhl, G.S. Variation in the aerobic demand of running among trained and untrained subjects. Med. Sci. Sport. Exerc. 1995, 27, 404–409. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors affecting running economy in trained distance runners. Sport. Med. 2004, 34, 465–485. [Google Scholar] [CrossRef] [PubMed]
- García-Pinillos, F.; Roche-Seruendo, L.E.; Marcén-Cinca, N.; Marco-Contreras, L.A.; Latorre-Román, P.A. Absolute reliability and concurrent validity of the Stryd system for the assessment of running stride kinematics at different velocities. J. Strength Cond. Res. 2018, 35, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Aubry, R.L.; Power, G.A.; Burr, J.F. An assessment of running power as a training metric for elite and recreational runners. J. Strength Cond. Res. 2018, 32, 2258–2264. [Google Scholar] [CrossRef]
- Olaya-Cuartero, J.; Cejuela, R. Contextualisation of running power: A systematic review. J. Phys. Educ. Sport 2020, 20, 2044–2051. [Google Scholar]
- Naclerio Ayllón, F.; Jiménez Gutiérrez, A. Entrenamiento De La Fuerza Contra Resistencias: Cómo Determinar Las Zonas De Entrenamiento. J. Hum. Sport Exerc. 2007, II, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Naclerio, F.; Jiménez, A.; Alvar, B.A.; Peterson, M.D. Assessing Strenght and Power in Resistance Training. J. Hum. Sport Exerc. 2009, 4, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Skinner, J.; McLellan, T. The transition from aerobic to anaerobic metabolism. Res. Q. Exerc. Sport 1980, 51, 234–248. [Google Scholar] [CrossRef]
- Cejuela, R.; Esteve-Lanao, J. Training load quantification in triathlon. J. Hum. Sport Exerc. 2011, 6, 218–232. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; Cejuela, R.; Seiler, S.; Larumbe, E.; Esteve-Lanao, J. Training-intensity distribution during an ironman season: Relationship with competition performance. Int. J. Sports Physiol. Perform. 2014, 9, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Sweetenham, B.; Atkinson, J. Championship Swim Training; Kinetics, H., Ed.; Human Kinetics Books: Champaign, IL, USA, 2003; ISBN 9780736045438. [Google Scholar]
- Ross, W.D.; Marfell-Jones, M.J. Kinanthropometry. Physiological Testing of the High-Performance Athlete; Human Kinetics Books: Champaign, IL, USA, 1991. [Google Scholar]
- Lee, J.B.; Sutter, K.J.; Askew, C.D.; Burkett, B.J. Identifying symmetry in running gait using a single inertial sensor. J. Sci. Med. Sport 2010, 13, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M. Peso osseo do brasileiro de ambos os sexos de 17–25 anos. Arq. Anat. Antropol. 1975, 1, 445. [Google Scholar]
- Carter, J.E.L. The Heath-Carter Anthropometric Somatotype; Instruction Manual: San Diego, CA, USA, 2002. [Google Scholar]
- Brue, F. Une Variante du test de piste progressif et maximal de Leger et Boucher pour la precise et facile de la vitesse maximale aerobie. French Athl. Fed. 1985, 25–30. [Google Scholar]
- Doherty, M.; Nobbs, L.; Noakes, T.D. Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes. Eur. J. Appl. Physiol. 2003, 89, 619–623. [Google Scholar] [CrossRef]
- Cohen, J. Statistical power Analysis for the Behavioral Sciences; Abingdon Press: Abingdon, Virginia, 1988. [Google Scholar]
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression; A practical Guide to Curve fitting; Oxford Unversity Press: Oxford, UK, 2003. [Google Scholar]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Brunkhorst, L.; Kielstein, H. Comparison of anthropometric characteristics between professional triathletes and cyclists. Biol. Sport 2013, 30, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Chollet, D.; Hue, O.; Auclair, F.; Millet, G.; Chatard, J. The effects of drafting on stroking in elite male triathletes. Eur. J. Appl. Physiol. 2000, 82, 413–417. [Google Scholar] [CrossRef]
- Basset, F.A.; Boulay, M.R. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 2000, 81, 214–221. [Google Scholar] [CrossRef]
- Schneider, D.A.; Lacroix, K.A.; Atkinson, G.R.; Troped, P.J.; Pollack, J. Ventilatory threshold and maximal oxygen uptake during cycling and running in triathletes. Med. Sci. Sports Exerc. 1990, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Billat, V. Fisiología y Metodología del Entrenamiento; Paidotribo: Barcelona, Spain, 2002; ISBN 84-8019-627-0. [Google Scholar]
- Ferrauti, A.; Bergermann, M.; Fernandez-Fernandez, J. Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners. J. Strength Cond. Res. 2010, 24, 2770–2778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona, C.; Cejuela, R.; Esteve-Lanao, J. Manual Para Entrenar Deportes de Resistencia; All in Your Mind: Guadalajara, Mexico, 2019; ISBN 9781074568122. [Google Scholar]
- Pallarés, J.; Morán-Navarro, R. Propuesta metodológica para el entrenamiento de la resistencia cardiorrespiratoria. J. Spor Heal. Res. 2012, 4, 119–136. [Google Scholar]
- Gómez-Molina, J.; Ogueta-Alday, A.; Camara, J.; Stickley, C.; Rodríguez-Marroyo, J.A.; García-López, J. Predictive variables of half-marathon performance for male runners. J. Sport. Sci. Med. 2017, 16, 187–194. [Google Scholar]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 1991, 89, 1991–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, T.J.; Kram, R.; Weyand, P.G.; Taylor, C.R. Energetics of bipedal running. I. Metabolic cost of generating force. J. Exp. Biol. 1998, 201, 2745–2751. [Google Scholar]
- Kram, R.; Taylor, C. Energetics of running: A new perspective. Nature 1990, 346, 265–267. [Google Scholar] [CrossRef]
- Nummela, A.; Keränen, T.; Mikkelsson, L.O. Factors related to top running speed and economy. Int. J. Sports Med. 2007, 28, 655–661. [Google Scholar] [CrossRef]
- Fourchet, F.; Girard, O.; Kelly, L.; Horobeanu, C.; Millet, G.P. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. J. Sci. Med. Sport 2015, 18, 199–203. [Google Scholar] [CrossRef]
- Hayes, P.R.; Caplan, N. Leg stiffness decreases during a run to exhaustion at the speed at VO2max. Eur. J. Sport Sci. 2014, 14, 556–562. [Google Scholar] [CrossRef]
- Slawinski, J.S.; Billat, V.L. Difference in mechanical and energy cost between highly, well, and nontrained runners. Med. Sci. Sports Exerc. 2004, 36, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.S.; Jones, A.; Dixon, S. The pursuit of improved running performance: Can changes in cushioning and proprioception influence running economy and injury risk? Footwear Sci. 2013, 5, S61–S62. [Google Scholar] [CrossRef] [Green Version]
- Tseh, W.; Caputo, J.L.; Morgan, D.W. Influence of gait manipulation on running economy in female distance runners. J. Sport. Sci. Med. 2008, 7, 91–95. [Google Scholar]
- Divert, C.; Mornieux, G.; Freychat, P.; Baly, L.; Mayer, F.; Belli, A. Barefoot-shod running differences: Shoe or mass effect? Int. J. Sports Med. 2008, 29, 512–518. [Google Scholar] [CrossRef]
- Conoboy, P.; Dyson, R. Effect of aging on the stride pattern of veteran marathon runners. Br. J. Sports Med. 2006, 40, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Tartaruga, M.; Brisswalter, J.; Peyré-Tartaruga, L.A.; Otávio, A.; Ávila, V.; Alberton, C.L.; Coertjens, M.; Cadore, E.L.; Tiggemann, C.L.; Silva, E.M.; et al. The Relationship Between Running Economy and Biomechanical Variables in Distance Runners. Res. Q. Exerc. Sport 2012, 833, 367–375. [Google Scholar] [CrossRef]
Pre-Test | Post-Test | p | ES | |
---|---|---|---|---|
Weight (kg) | 72.4 ± 5.2 | 71.4 ± 4.2 | 0.147 | 0.97 |
Σ 6 skinfolds (cm) | 42.5 ± 4.5 | 34.4 ± 1.8 | 0.017 * | 2.39 |
Lean mass (kg) | 33.3 ± 1.7 | 33 ± 1.4 | 0.137 | 1.01 |
Fat mass (kg) | 5.6 ± 0.8 | 4.7 ± 0.4 | 0.027 * | 2.03 |
Fat mass (%) | 7.7 ± 0.9 | 6.5 ± 0.5 | 0.019 * | 2.30 |
Pre-Test | Post-Test | p | ES | |
---|---|---|---|---|
VT1 | ||||
Speed (km h−1) | 14.95 ± 0.39 | 15.4 ± 0.73 | 0.103 | 1.16 |
VO2 (mL kg−1 min−1) | 47.5 ± 4.8 | 53.50 ± 1.29 | 0.081 | 1.29 |
% VO2max (mL kg−1 min−1) | 66.33 ± 7.77 | 73.56 ± 1.47 | 0.106 | 1.15 |
HR (bpm) | 151.25 ± 15.48 | 158.5 ± 7.68 | 0.318 | 0.6 |
VT2 | ||||
Speed (km h−1) | 16.98 ± 0.62 | 17.95 ± 0.79 * | 0.032 | 1.9 |
VO2 (mL kg−1 min−1) | 60.5 ± 3.11 | 64 ± 2.94 * | 0.012 | 2.71 |
% VO2max (mL kg−1 min−1) | 84.29 ± 1.1 | 87.94 ± 1.59 * | 0.013 | 2.65 |
HR (bpm) | 174.5 ± 10.54 | 177.5 ± 10.34 | 0.182 | 0.87 |
MAS | ||||
Peak speed (km h−1) | 20.13 ± 0.71 | 20.13 ± 0.62 | 1 | 0 |
VO2max (mL kg−1 min−1) | 71.75 ± 2.87 | 72.75 ± 2.22 | 0.092 | 1.22 |
% VO2max (mL kg−1 min−1) | 100 | 100 | ||
HRmax (bpm) | 189.75 ± 7.04 | 191 ± 9.31 | 0.464 | 0.42 |
Pre-Test | Post-Test | SWC | Result | p | ES | ||
---|---|---|---|---|---|---|---|
VT1 | |||||||
Stiffness (kn/m) | 10.95 ± 1.61 | 10.73 ± 0.39 | 0.322 | 0.225 | 0.751 | 0.17 | |
CT (ms) | 207.88 ± 1.37 | 204.98 ± 1.93 | 0.273 | 2.9 | 0.069 | 1.39 | |
VO (cm) | 9.15 ± 0.52 | 9.03 ± 0.31 | 0.104 | 0.125 | 0.492 | 0.39 | |
Cadence (spm) | 165.68 ± 3.31 | 167 ± 1.59 | 0.663 | −1.325 | 0.292 | 0.64 | |
FT (s) | 0.154 ± 0.01 | 0.154 ± 0.005 | 0.001 | 0.000 | 0.975 | 0.02 | |
SL norm (m) | 1.62 ± 0.06 | 1.72 ± 0.09 | 0.013 | −0.099 | 0.056 | 1.52 | |
Duty Factor | 0.57 ± 0.01 | 0.57 ± 0.01 | 0.002 | 0.003 | 0.257 | 0.7 | |
VT2 | |||||||
Stiffness (kn/m) | 11.03 ± 1.32 | 10.55 ± 0.41 | 0.264 | 0.475 | 0.488 | 0.39 | |
CT (ms) | 191.35 ± 2.94 | 194.73 ± 4.12 | 0.587 | −3.375 | 0.187 | 0.85 | |
VO (cm) | 8.75 ± 0.32 | 8.75 ± 0.17 | 0.064 | 0.000 | 1 | 0 | |
Cadence (spm) | 172.2 ± 2.18 | 171.2 ± 1.85 | 0.436 | 1.000 | 0.414 | 0.47 | |
FT (s) | 0.157 ± 0.005 | 0.156 ± 0.003 | 0.0009 | 0.0014 | 0.377 | 0.52 | |
SL norm (m) | 1.79 ± 0.06 | 1.90 ± 0.08 | 0.012 | −0.104 | 0.017 * | 2.41 | |
Duty Factor | 0.06 ± 0.01 | 0.56 ± 0.01 | 0.002 | −0.006 | 0.169 | 0.9 | |
MAS | |||||||
Stiffness (kn/m) | 10.93 ± 1.58 | 10 ± 0.34 | 0.317 | 0.925 | 0.287 | 0.65 | |
CT (ms) | 176.33 ± 4.5 | 181.13 ± 1.1 | 0.899 | −4.800 | 0.165 | 0.91 | |
VO (cm) | 7.93 ± 0.62 | 8.05 ± 0.31 | 0.125 | −0.125 | 0.633 | 0.27 | |
Cadence (spm) | 182.5 ± 5.38 | 179.9 ± 2.47 | 1.076 | 2.600 | 0.363 | 0.54 | |
FT (s) | 0.153 ± 0.001 | 0.152 ± 0.001 | 0.002 | 0.000 | 0.956 | 0.3 | |
SL norm (m) | 1.96 ± 0.05 | 1.99 ± 0.09 | 0.010 | −0.029 | 0.279 | 0.66 | |
Duty Factor | 0.54 ± 0.02 | 0.54 ± 0.01 | 0.004 | −0.007 | 0.406 | 0.48 |
R2 | Stiffness (kn/m) | CT (ms) | VO (cm) | Cadence (spm) | FT (s) | SL norm (m) | Duty Factor |
---|---|---|---|---|---|---|---|
VT1 speed (km/h) | |||||||
Pre | 0.36 | 0 | 0.91 | 0.87 | 0.93 | 0.63 | 0.93 |
Post | 0.99 | 0.84 | 0.23 | 0.13 | 0.37 | 0.95 | 0.49 |
VT2 speed (km/h) | |||||||
Pre | 0.27 | 0.26 | 0.23 | 0.09 | 0.58 | 0.42 | 0.72 |
Post | 0.66 | 0.59 | 0.09 | 0.33 | 0.10 | 0.91 | 0.40 |
MAS (km/h) | |||||||
Pre | 0.58 | 0.29 | 0.45 | 0.67 | 0.24 | 0.29 | 0.07 |
Post | 0.83 | 0.92 | 0.15 | 0.22 | 0.06 | 0.9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaya-Cuartero, J.; Cejuela, R. Influence of Biomechanical Parameters on Performance in Elite Triathletes along 29 Weeks of Training. Appl. Sci. 2021, 11, 1050. https://doi.org/10.3390/app11031050
Olaya-Cuartero J, Cejuela R. Influence of Biomechanical Parameters on Performance in Elite Triathletes along 29 Weeks of Training. Applied Sciences. 2021; 11(3):1050. https://doi.org/10.3390/app11031050
Chicago/Turabian StyleOlaya-Cuartero, Javier, and Roberto Cejuela. 2021. "Influence of Biomechanical Parameters on Performance in Elite Triathletes along 29 Weeks of Training" Applied Sciences 11, no. 3: 1050. https://doi.org/10.3390/app11031050
APA StyleOlaya-Cuartero, J., & Cejuela, R. (2021). Influence of Biomechanical Parameters on Performance in Elite Triathletes along 29 Weeks of Training. Applied Sciences, 11(3), 1050. https://doi.org/10.3390/app11031050