The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Disalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef]
- Reddy, P.; Jang, S.Y.; Segalman, R.A.; Majumdar, A. Thermoelectricity in molecular junctions. Science 2007, 315, 1568–1571. [Google Scholar] [CrossRef] [PubMed]
- Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050. [Google Scholar] [CrossRef]
- Hasan, M.N.; Wahid, H.; Nayan, N.; Mohamed Ali, M.S. Inorganic thermoelectric materials: A review. Int. J. Energy Res. 2020, 44, 6170–6222. [Google Scholar] [CrossRef]
- Evangeli, C.; Spiece, J.; Sangtarash, S.; Molina-Mendoza, A.J.; Mucientes, M.; Mueller, T.; Lambert, C.; Sadeghi, H.; Kolosov, O. Nanoscale Thermal Transport in 2D Nanostructures from Cryogenic to Room Temperature. Adv. Electron. Mater. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Sangtarash, S.; Li, G.; Gantenbein, M.; Cao, W.; Alqorashi, A.; Liu, J.; Zhang, C.; Zhang, Y.; Chen, L.; et al. Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives. Nanoscale 2020, 12, 15150–15156. [Google Scholar] [CrossRef] [PubMed]
- Takaloo, A.V.; Sadeghi, H. Quantum Interference Enhanced Thermoelectricity in Ferrocene Based Molecular Junctions. J. Nanosci. Nanotechnol. 2019, 19, 7452–7455. [Google Scholar] [CrossRef] [PubMed]
- Sangtarash, S.; Sadeghi, H.; Lambert, C.J. Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions. Phys. Chem. Chem. Phys. 2018, 20, 9630–9637. [Google Scholar] [CrossRef] [Green Version]
- Garner, M.H.; Li, H.; Chen, Y.; Su, T.A.; Shangguan, Z.; Paley, D.W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 2018, 558, 415–419. [Google Scholar] [CrossRef]
- Zotti, L.A.; Bürkle, M.; Pauly, F.; Lee, W.; Kim, K.; Jeong, W.; Asai, Y.; Reddy, P.; Cuevas, J.C. Heat dissipation and its relation to thermopower in single-molecule junctions. New J. Phys. 2014, 16, 015004. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.; Jeong, W.; Zotti, L.A.; Pauly, F.; Cuevas, J.C.; Reddy, P. Heat dissipation in atomic-scale junctions. Nature 2013, 498, 209–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, H. Theory of electron, phonon and spin transport in nanoscale quantum devices. Nanotechnology 2018, 29, 373001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; van der Zee, B.; Alessandri, R.; Sami, S.; Dong, J.; Nugraha, M.I.; Barker, A.J.; Rousseva, S.; Qiu, L.; Qiu, X.; et al. N-type organic thermoelectrics: Demonstration of ZT > 0.3. Nat. Commun. 2020, 11, 5694. [Google Scholar] [CrossRef] [PubMed]
- Al-Galiby, Q.H.; Sadeghi, H.; Algharagholy, L.A.; Grace, I.; Lambert, C. Tuning the thermoelectric properties of metallo-porphyrins. Nanoscale 2016, 8, 2428–2433. [Google Scholar] [CrossRef] [Green Version]
- Sangtarash, S.; Sadeghi, H.; Lambert, C.J. Exploring quantum interference in heteroatom-substituted graphene-like molecules. Nanoscale 2016, 8, 13199–13205. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H. Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity. J. Phys. Chem. C 2019, 123, 12556–12562. [Google Scholar] [CrossRef] [Green Version]
- Sangtarash, S.; Sadeghi, H. Radical enhancement of molecular thermoelectric efficiency. Nanoscale Adv. 2020, 2, 1031–1035. [Google Scholar] [CrossRef] [Green Version]
- Mosso, N.; Sadeghi, H.; Gemma, A.; Sangtarash, S.; Drechsler, U.; Lambert, C.; Gotsmann, B. Thermal Transport through Single-Molecule Junctions. Nano Lett. 2019, 19, 7614–7622. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Hur, S.; Akbar, Z.A.; Klöckner, J.C.; Jeong, W.; Pauly, F.; Jang, S.Y.; Reddy, P.; Meyhofer, E. Thermal conductance of single-molecule junctions. Nature 2019, 572, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Meyhofer, E.; Reddy, P. Thermal and Thermoelectric Properties of Molecular Junctions. Adv. Funct. Mater. 2019, 30, 1904534. [Google Scholar] [CrossRef]
- Rincón-García, L.; Evangeli, C.; Rubio-Bollinger, G.; Agraït, N. Thermopower measurements in molecular junctions. Chem. Soc. Rev. 2016, 45, 4285–4306. [Google Scholar] [CrossRef]
- Klöckner, J.C.; Siebler, R.; Cuevas, J.C.; Pauly, F. Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons. Phys. Rev. B 2017, 95, 245404. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H.; Sangtarash, S.; Lambert, C.J. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation. Nano Lett. 2015, 15, 7467–7472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klöckner, J.C.; Cuevas, J.C.; Pauly, F. Tuning the thermal conductance of molecular junctions with interference effects. Phys. Rev. B 2017, 96, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Sharony, I.; Nitzan, A. Local Atomic Heat Currents and Classical Interference in Single-Molecule Heat Conduction. J. Phys. Chem. Lett. 2020, 11, 4261–4268. [Google Scholar] [CrossRef]
- Mosso, N.; Drechsler, U.; Menges, F.; Nirmalraj, P.; Karg, S.; Riel, H. Heat transport through atomic contacts. Nat. Nanotechnol. 2017, 12, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H. Discriminating Seebeck sensing of molecules. Phys. Chem. Chem. Phys. 2019, 21, 2378–2381. [Google Scholar] [CrossRef] [Green Version]
- Markussen, T. Phonon interference effects in molecular junctions. J. Chem. Phys. 2013, 139, 244101. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order- N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef] [Green Version]
- Franz, R.; Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. Chem. 1853, 165, 497–531. [Google Scholar] [CrossRef] [Green Version]
Molecule | Calculated κ (pW/K) | Measured κ (pW/K) | Ref. | ||
---|---|---|---|---|---|
κp | κe at DFT Fermi Energy | ||||
Biphenyl–4,4′–dithiol (BDT) | 19.6 | 2.3 | - | [17] | |
2,2′–dinitro–BDT | 11.7 | <0.01 | - | [17] | |
oligo(2–phenylene–4,4′–ethynylene)–dithiol (OPE2) | 9.9 | <0.01 | - | [17] | |
2,2′–dinitro–OPE2 | 9.7 | 16.7 | - | [17] | |
4,4′–bipyridyl (BP) | 34.8 | <0.01 | - | [17] | |
3,3′,5,5′–tetrachloride–BP | 14.8 | <0.01 | - | [17] | |
3,3′–dinitro–BP | 23.6 | <0.01 | - | [17] | |
oligo(3–phenylene–4,4′–ethynylene)–dithiol (OPE3) | 19 | 0.1 | 20 ± 6 | [19] | |
Octane–dithiol | 23 | 0.02 | 29 ± 8 | [19] | |
Alkanes with dihydrobenzo[b]thiophene (BT) anchor (N = number of C2H4) | N = 1 | 25.4 | 0.03 | - | [24] |
N = 2 | 33.4 | <0.01 | - | [24] | |
N = 4 | 30.3 | <0.01 | - | [24] | |
N = 8 | 5.6 | <0.01 | - | [24] | |
Alkanedithiol (N = number of C2H4) | N = 1 | 17–22 | 5.7 | 14.6 ± 3 | [20] |
N = 2 | 18–27 | 1.1 | 13.4 ± 5 | [20] | |
N = 3 | 17–29 | <0.01 | 16.9 ± 3 | [20] | |
N = 4 | 20–33 | <0.01 | 26.3 ± 7 | [20] | |
N = 5 | 17–33 | <0.01 | 28 ± 8 | [20] | |
Oligoyne with BT anchor (N = number of C2H4) | N = 1 | 15.6 | 0.4 | - | [24] |
N = 2 | 9.2 | 0.5 | - | [24] | |
N = 4 | 7.7 | 0.25 | - | [24] | |
2,2′–bipyridine–BP | 6 | 0.3 | - | [18] | |
BP functionalized with tert–butyl nitroxide radical | 2 | 1.45 | - | [18] | |
C60 monomer | 20–46.3 | 68–572 | - | [23] | |
C60 dimer | 7–7.3 | 0.1–1.8 | - | [23] | |
Benzenedithiol | meta | 7.5 | - | - | [26] |
para | 22.5 | - | - | ||
Benzenediamine | meta | 24.5 | - | - | [25] |
para | 25.2 | - | - | ||
2–fluoro–1,4–diaminobenzene | 24.4 | 2.62 | [25] | ||
2–chloro–1,4–diaminobenzene | 22.2 | 2.7 | - | [25] | |
2–bromo–1,4–-diaminobenzene | 16.9 | 2.8 | - | [25] | |
2,5–dibromo–1,4–diaminobenzene | 17.9 | 2.9 | - | [25] | |
2,6–dibromo–1,4–diaminobenzene | 10.5 | 2.9 | - | [25] | |
2,3–dibromo–1,4–diaminobenzene | 18 | 3 | - | [25] | |
OPE3–diamine | meta | 13.8 | 0.11 | - | [25] |
para | 24.5 | <0.01 | - | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, M.D.; Sangtarash, S.; Sadeghi, H. The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Appl. Sci. 2021, 11, 1066. https://doi.org/10.3390/app11031066
Noori MD, Sangtarash S, Sadeghi H. The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Applied Sciences. 2021; 11(3):1066. https://doi.org/10.3390/app11031066
Chicago/Turabian StyleNoori, Mohammed D., Sara Sangtarash, and Hatef Sadeghi. 2021. "The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions" Applied Sciences 11, no. 3: 1066. https://doi.org/10.3390/app11031066
APA StyleNoori, M. D., Sangtarash, S., & Sadeghi, H. (2021). The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Applied Sciences, 11(3), 1066. https://doi.org/10.3390/app11031066