Effects of Black Jade on Osteogenic Differentiation of Adipose Derived Stem Cells under Benzopyrene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Black Jade Extract
2.2. Quantitative PCR
2.3. Flow Cytometry
2.4. Image Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, F.-C.; Zhao, H.-X.; Gan, F.-X. Nondestructive analysis of chemical composition, structure and mineral constitution of jadeite jade. Guang Pu Xue Yu Guang Pu Fen Xi 2011, 31, 3134–3139. (In Chinese) [Google Scholar]
- Nizar, A. Mineral identification of black-jade gemstone from Aceh Indonesia. J. Phys. Conf. Ser. 2018, 1011, 012001. [Google Scholar]
- Yin, K.; Tian, J.; Ma, Y.-B.; Wu, Y.; Wang, Y. Mineralogy and colosation of oil-green jadeite jade. Guang Pu Xue Yu Guang Pu Fen Xi 2014, 34, 3323–3326. (In Chinese) [Google Scholar]
- Larsson, B.K.; Sahlberg, G.P.; Eriksson, A.T.; Busk, L.A. Polycyclic aromatic hydrocarbons in grilled food. J. Agric. Food Chem. 1983, 31, 867–873. [Google Scholar] [CrossRef]
- Liersch, J.; Von Köckritz, A.; Schaller, J. Dermatopathology 101: Part 1—Inflammatory skin diseases. J. der Deutschen Dermatologischen Gesellschaft 2017, 15, 9–30. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Lee, S.-M.; Ye, S.-K.; Yoon, S.-H.; Chung, M.-H.; Choi, J. Benzo[a]pyrene-induced DNA damage and p53 modulation in human hepatoma HepG2 cells for the identification of potential biomarkers for PAH monitoring and risk assessment. Toxicol. Lett. 2006, 167, 27–33. [Google Scholar] [CrossRef]
- Xie, Q.; Wei, W.; Ruan, J.; Ding, Y.; Zhuang, A.; Bi, X.; Sun, H.; Gu, P.; Wang, Z.; Fan, X. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci. Rep. 2017, 7, 42840. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Wang, X.; Chen, L.-W.; Luo, Z.-J. Molecular Targeting Regulation of Proliferation and Differentiation of the Bone Marrow-Derived Mesenchymal Stem Cells or Mesenchymal Stromal Cells. Curr. Drug Targets 2012, 13, 561–571. [Google Scholar] [CrossRef]
- Karantalis, V.; Hare, J.M. Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease. Circ. Res. 2015, 116, 1413–1430. [Google Scholar] [CrossRef]
- Arnhold, S.; Wenisch, S. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine. Am. J. Stem Cells 2015, 4, 1–12. [Google Scholar]
- Wada, Y.; Ikemoto, T.; Morine, Y.; Imura, S.; Saito, Y.; Yamada, S.; Shimada, M. The Differences in the Characteristics of Insulin-producing Cells Using Human Adipose-tissue Derived Mesenchymal Stem Cells from Subcutaneous and Visceral Tissues. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kakudo, N.; Shimotsuma, A.; Kusumoto, K. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem. Biophys. Res. Commun. 2007, 359, 239–244. [Google Scholar] [CrossRef]
- Bizot-Foulon, V.; Bouchard, B.; Hornebeck, W.; Dubertret, L.; Bertaux, B. Uncoordinate expressions of type I and III collagens, collagenase and tissue inhibitor of matrix metalloproteinase 1 along in vitro proliferative life span of human skin fibroblasts Regulation by all-trans retinoic acid. Cell Biol. Int. 1995, 19, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Mannello, F.; Tonti, G.A.; Bagnara, G.P.; Papa, S. Role and Function of Matrix Metalloproteinases in the Differentiation and Biological Characterization of Mesenchymal Stem Cells. Stem Cells 2006, 24, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Velletri, T.; Xie, N.; Wang, Y.; Huang, Y.; Yang, Q.; Chen, X.; Chen, Q.; Shou, P.; Gan, Y.; Cao, G.; et al. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis. 2016, 7, e2015. [Google Scholar] [CrossRef] [Green Version]
- Holleville, N.; Mateos, S.; Bontoux, M.; Bollérot, K.; Monsoro-Burq, A.H. Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev. Biol. 2007, 304, 860–874. [Google Scholar] [CrossRef]
- Kim, B.Y.; Shin, G.H.; Lee, I.S.; Kim, S.W.; Kim, H.S.; Kim, J.K.; Lee, S.G. Localization patterns of dopamine active transporter synthesizing cells during development of brine shrimp. Arch. Insect Biochem. Physiol. 2017, 94, e21378. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Lee, K.; Lee, C.; Song, A.; Kim, J.; Kim, B.; Lee, S.G. Protection and immune modulation of activated human vaginal epithelial cells by Aurea helianthus extract. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Kim, G.; Lee, H.-S.; Bang, J.S.; Kim, B.; Ko, D.; Yang, M. A Current Review for Biological Monitoring of Manganese with Exposure, Susceptibility, and Response Biomarkers. J. Environ. Sci. Health Part C 2015, 33, 229–254. [Google Scholar] [CrossRef]
- Baruthio, F. Toxic effects of chromium and its compounds. Biol. Trace Element Res. 1992, 32, 145–153. [Google Scholar] [CrossRef]
- Wang, L.; Lee, W.; Cui, Y.R.; Ahn, G.; Jeon, Y.J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-kappaB, AP-1, and MAPKs signaling pathways. Environ. Pollut. 2019, 252, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Kim, H.S.; Sanjeewa, K.K.A.; Oh, J.Y.; Jeon, Y.J.; Lee, W.W. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxy-carmalol isolated from a brown alga Ishige okamurae. Algae Seoul 2017, 32, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Shu, B.; Zhao, Y.; Wang, Y.; Wang, G.; Shang, X.; Britt, M.; Olmedo, M.; Chelly, M.; Morandi, M.M.; Barton, S.; et al. Oleanolic Acid Enhances Mesenchymal Stromal Cell Osteogenic Potential by Inhibition of Notch Signaling. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Tang, H.; Mei, Z.; Li, N.; Zeng, Z.; Darko, K.O.; Yin, J.; Hu, C.-A.A.; Yang, X. Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 2017, 49, 1981–1997. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Shang, X.; Zhang, H.; Wang, G.; Massey, P.A.; Barton, S.R.; Kevil, C.G.; Dong, Y. Notch Signaling in Osteogenesis, Osteoclastogenesis, and Angiogenesis. Am. J. Pathol. 2019, 189, 1495–1500. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Calle, J.; Sato, A.Y.; Bellido, T. Role and mechanism of action of sclerostin in bone. Bone 2017, 96, 29–37. [Google Scholar] [CrossRef] [Green Version]
Primer | F/R * | Seq (5′ → 3′) |
---|---|---|
AKT | F | GGCTGCCAAGTGTCAAATCC |
R | AGTGCTCCCCCACTTACTTG | |
NFκB-P50 | F | CGGAGCCCTCTTTCACAGTT |
R | TTCAGCTTAGGAGCGAAGGC | |
NFκB-P52 | F | AGGTGCTGTAGCGGGATTTC |
R | AGAGGCACTGTATAGGGCAG | |
Bcl2 | F | CTGCTGACATGCTTGGAAAA |
R | ATTGGGCTACCCCAGCAATG | |
BAX | F | AGCGCTCCCCCACTTACTTG |
R | GACAGGGACATCAGTCGCTT | |
Cyt | F | ATGAATGACCACTCTAGCCA |
R | ATAGAAACAGCCAGGACCGC | |
Dlx5 | F | ACCATCCGTCTCAGGAATCG |
R | ACCTTCTCTGTAATGCGGCC | |
Runx2 | F | GACCAGTCTTACCCCTCCTACC |
R | CTGCCTGGCTCTTCTTACTGAG | |
VEGF | F | ACTGCCATCCAATCGAGACC |
R | CGGCCGCGGTGTGTCTA | |
BMP6 | F | ATCCTTTCTGCGAGCGGGTT |
R | ATCTCTCATGGTCGTCCGGG | |
SAMD4 | F | AGCATGGGGTGTGAGAATGG |
R | TCGTTTCAAAGGGCTGTGGT | |
COL1A1 | F | CAGGGTGGCTTCTGATATGTCC |
R | GGTTAGAAAGTGGCAAAGGGGA | |
GAPDH | F | GTGGTCTCCTCTGACTTCAACA |
R | CTCTTCCTCTTGTGCTCTTGCT |
Composition | Control * (%) | Heated Black Jade (%) |
---|---|---|
SiO2 | 41.30 ± 0.1 | 41.80 ± 0.2 # |
MgO | 34.20 ± 0.45 | 34.80 ± 0.1 # |
Total Fe | 6.78 ± 0.1 | 6.62 ± 0.2 # |
Al2O3 | 2.81 ± 0.2 | 1.32 ± 0.2 # |
CaO | 1.57 ± 0.3 | 1.68 ± 0.1 # |
FeO | 0.59 ± 0.02 | 0.98 ± 0.01 # |
K2O | 0.42 ± 0.02 | 0.62 ± 0.02 # |
Na2O | 0.38 ± 0.01 | 0.74 ± 0.01 # |
TiO2 | 0.16 ± 0.02 | 0.025 ± 0.0002 # |
Cr | 0.07 ± 0.01 | <0.005 ± 0.0001 # |
Mn | 0.08 ± 0.001 | <0.005 ± 0.0002 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Shin, G.H.; Jin, G.S.; Jin, S.; Kim, B.; Lee, S.G. Effects of Black Jade on Osteogenic Differentiation of Adipose Derived Stem Cells under Benzopyrene. Appl. Sci. 2021, 11, 1346. https://doi.org/10.3390/app11031346
Park Y, Shin GH, Jin GS, Jin S, Kim B, Lee SG. Effects of Black Jade on Osteogenic Differentiation of Adipose Derived Stem Cells under Benzopyrene. Applied Sciences. 2021; 11(3):1346. https://doi.org/10.3390/app11031346
Chicago/Turabian StylePark, Yoonjin, Gyeong Hee Shin, Gyo Sik Jin, Sungbae Jin, Boyong Kim, and Seung Gwan Lee. 2021. "Effects of Black Jade on Osteogenic Differentiation of Adipose Derived Stem Cells under Benzopyrene" Applied Sciences 11, no. 3: 1346. https://doi.org/10.3390/app11031346
APA StylePark, Y., Shin, G. H., Jin, G. S., Jin, S., Kim, B., & Lee, S. G. (2021). Effects of Black Jade on Osteogenic Differentiation of Adipose Derived Stem Cells under Benzopyrene. Applied Sciences, 11(3), 1346. https://doi.org/10.3390/app11031346